

AUTOMATING SECURITY PROTOCOL ANALYSIS

THESIS

Stephen W. Mancini, 1Lt, USAF

AFIT/GCS/ENG/04-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/04-12

AUTOMATING SECURITY PROTOCOL ANALYSIS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Stephen W. Mancini, BS

1Lt, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/04-12

AUTOMATING SECURITY PROTOCOL ANALYSIS

Stephen W. Mancini, BS

1Lt, USAF

Approved:

____/signed/_______________________________ _9 Mar 2004_
Major Robert P. Graham, Jr., PhD (Chairman) Date

____ /signed/________________________________ _9 Mar 2004_
Richard A. Raines, Ph.D., AFIT (Member) Date

____ /signed/________________________________ _9 Mar 2004_
Henry B. Potoczny, Ph.D., AFIT (Member) Date

iv

Acknowledgments

 I would like to express my sincere appreciation to my faculty advisor, Major Robert

Graham. There is no way this thesis would have been done this well without his

guidance. Also, I would like to thank the members of my committee, Dr. Richard Raines

and Dr. Henry Potoczny, for their support and assistance. Finally, I would like to

acknowledge Dr. Sylvan Pinsky, my sponsor from NSA. The trips to Baltimore and

California proved very valuable in my understanding of the whole Strand Space Theory.

 Stephen W. Mancini

v

Table of Contents

Page

Acknowledgments.. iv

Table of Contents...v

List of Figures .. viii

List of Tables ...x

Abstract .. xi

I. Introduction ...1

1.1 Background...1

1.2 Problem Statement..1

1.3 Summary of Results ...2

1.4 Thesis Overview...2

II. Literature Review..4

2.1 Chapter Overview...4

2.2 Symmetric/Asymmetric Cryptography ..5

2.3 Strand Spaces and Security Protocols ..6

2.3.1 Strand Spaces – Brief Overview..7

2.3.2 Understanding the Penetrator ..9

2.3.3 Authentication Tests..10

2.3.4 Tests Applied to Needham-Schroeder...14

2.4 Security Protocol Examples ...15

2.4.1 Types of Protocols...15

2.4.2 Needham-Schroeder Protocol..16

2.4.3 Penetration of Needham-Schroeder Defined...17

vi

2.4.4 Kerberos ..18

2.5 Related Work in the Automation of Security Protocol Verification20

2.5.1 Failure Divergences Refinement Checker...21

2.5.2 Process Calculus..21

2.5.3 Athena..22

2.5.4 Security Modeling in Maude ...22

2.5.5 Multi-Set Rewriting...24

2.6 Summary...24

III. Methodology..25

3.1 Chapter Overview...25

3.2 Problem Review ...25

3.3 Software Overview...26

3.4 Java Based Protocol Analysis...26

3.4.1 Layout of Java Program...26

3.4.2 Description of Parsing Operation ..28

3.4.3 Description of Analysis Operation ..29

3.5 Specific Protocols analyzed using Java..32

3.5.1 Verifying Presence of Tests...33

3.5.2 Analyzing Needham-Schroeder...36

3.6 Summary...39

IV. Analysis and Results..40

4.1 Chapter Overview...40

4.2 Results of Protocol Analyses..40

vii

4.2.1 Wide Mouth Frog Protocol..41

4.2.2 Yahalom Protocol..42

4.2.3 Woo-Lam Protocol ..44

4.2.4 Neuman-Stubblebine Protocol...45

4.2.5 Needham-Schroeder with Server...47

4.2.6 Kerberos Protocol..48

4.2.7 Analyzing Otway-Rees..50

4.3 Non-Regular Protocol Test Cases ..51

4.3.1 Repeating Message..51

4.3.2 Sub Term Relationship of Encrypted Test Component.....................................52

4.3.3 Unreadable Encryption on Messages ..53

4.4 Summary...53

V. Conclusions and Recommendations ..55

5.1 Chapter Overview...55

5.1 Conclusions of Research ..55

5.3 Significance of Research ..56

5.4 Recommendations for Future Research..56

Appendix A – Security Protocol Analyzer Code...59

Bibliography ..89

viii

List of Figures

Page

Figure 2.1 - Needham-Schroeder Protocol ... 9

Figure 2.2 - Outgoing Test.. 12

Figure 2.3 – Annotated Needham-Schroeder.. 14

Figure 2.4 - Needham-Schroeder Penetrated .. 17

Figure 2.5 - Kerberos Communication Initialization.. 20

Figure 3.1 – Class Diagram of SPA.. 28

Figure 3.2 – Needham-Schroeder Protocol Input File .. 29

Figure 3.3 – UML of Message Breakout .. 29

Figure 3.4 – Output of running Needham-Schroeder in SPA... 37

Figure 3.5 – Output of NS with duplicate transmission of nonce..................................... 38

Figure 4.1 -Wide-Mouth Frog Protocol .. 42

Figure 4.2 – Yahalom Protocol... 44

Figure 4.3 – Woo-Lam Protocol ... 45

Figure 4.4 – Neuman-Stubblebine with Tags on Keys/Tickets .. 46

Figure 4.5 – Neuman-Stubblebine w/o Tags on Keys/Tickets ... 47

Figure 4.6 – Needham-Schroeder Protocol (w/ Server).. 48

Figure 4.7 – Kerberos Protocol... 50

Figure 4.8 – Output of Otway-Rees protocol run ... 51

Figure 4.9 - Repeating Message.. 52

Figure 4.10 - Sub-Term Re-Encryption .. 53

ix

Figure 4.11 – Needham-Schroeder with improper encryption ... 53

x

List of Tables

Page

Table 1 – Brief Description of SPA classes.. 27

xi

Abstract

 When Roger Needham and Michael Schroeder first introduced a seemingly secure

protocol [24], it took over 18 years to discover that even with the most secure encryption,

the conversations using this protocol were still subject to penetration. To date, there is

still no one protocol that is accepted for universal use. Because of this, analysis of the

protocol outside the encryption is becoming more important. Recent work by Joshua

Guttman and others [9] have identified several properties that good protocols often

exhibit. Termed “Authentication Tests”, these properties have been very useful in

examining protocols. The purpose of this research is to automate these tests and thus

help expedite the analysis of both existing and future protocols.

 The success of this research is shown through rapid analysis of numerous protocols for

the existence of authentication tests. The result of this is that an analyst is now able to

ascertain in near real-time whether or not a proposed protocol is of a sound design or

whether an existing protocol may contain previously unknown weaknesses. The other

achievement of this research is the generality of the input process involved. Although

there exist other protocol analyzers, their use is limited primarily due to their complexity

of use. With the tool generated here, an analyst needs only to enter their protocol into a

standard text file; and almost immediately, the analyzer determines the existence of the

authentication tests.

1

AUTOMATING SECURITY PROTOCOL ANALYSIS

I. Introduction

1.1 Background

 When Roger Needham and Michael Schroeder first introduced a seemingly secure

protocol [24], it took over 18 years to discover that even with the most secure encryption,

the conversations using this protocol were still subject to penetration [9]. To date, there is

still no one protocol that is accepted for universal use. Because of this, analysis of the

protocol outside the encryption is becoming more important. Recent work by Joshua

Guttman and others [5] has identified several properties that good protocols often exhibit.

Termed “Authentication Tests”, these properties have been very useful in examining

protocols. The purpose of this research is to automate these tests and thus help expedite

the analysis of both existing and future protocols.

1.2 Problem Statement

Numerous security protocols have been proposed [29]. They utilize both

asymmetric and symmetric cryptography and employ characteristics such as trusted and

non-trusted third parties. Chapter 2 covers these concepts in great detail. The problem is

that analysis of these protocols is normally done either through tedious pen and paper

proofs or by realizing weaknesses after the fact. This research is intended to reduce the

burdensome task of evaluating protocols from a theoretical pen-and-paper method to a

more automated method that incorporates techniques understood to prove certain

2

correctness properties of a protocol. Although there are other methods to evaluate

protocols, this research focuses on the methods developed by Guttman et al [5].

1.3 Summary of Results

 The Security Protocol Analyzer (SPA) successfully shows that automated tools can be

highly valuable in the performance of protocol analysis. In particular, the SPA is able to

determine when and where outgoing, incoming and unsolicited tests occur within a

protocol run. Using string comparisons vice type comparisons requires specific values be

given and does limit the application to analysis based on completed static runs. However,

putting together numerous protocols in generic text files proves much easier than

individual protocol development as noted in other protocol analyzers [11, 27]. It also

allows for much quicker analysis of the protocol because it does not have to dynamically

create a search tree; instead it only examines the post-run state of the protocol as entered

in the input text file. The SPA takes any protocol as input in a standard text file and

generates accurate output that shows occurrences of authentication tests. Detecting

authentication tests is done in very short time.

1.4 Thesis Overview

The remainder of this thesis consists of four chapters.

• Chapter 2 – This chapter is intended to give the reader an understanding of the

theoretical aspects of what this thesis intends to accomplish. This chapter focuses

primarily on background literature and other work done in the field of protocol

3

analysis. It introduces concepts such as authentication tests, test components and

different types of encryption methods.

• Chapter 3 – This chapter lays out how the protocol analysis is accomplished. It

describes the inner workings of an automated analysis tool developed specifically

for this research and gives the reader an understanding of how the results of the

protocol analysis tool are to be interpreted.

• Chapter 4 – In this chapter, numerous protocols are executed using the analysis

tool. The output is described and the importance of certain functionality, in

relation to the tool, is laid out for the reader.

• Chapter 5 –This is the summary chapter. Here, the determination about the

effectiveness of the tool is given. It also lays out the groundwork as to where

future work in the field of protocol analysis should go.

4

II. Literature Review

2.1 Chapter Overview

 This chapter’s purpose is to give the reader a basic understanding of strand spaces and

authentication tests. First, an introduction into the basic forms of encryption, symmetric

and asymmetric, is given. This is necessary to ensure the reader understands basic

cryptographic principles that are discussed throughout this chapter. Next, a brief

introduction of what strand spaces are and how they are a means of representing

protocols within the context of graph theory is given. Particularly, this chapter shows

how strand spaces are used to model current protocols, such as Needham-Schroeder-

Lowe [9] and Kerberos [13]. It also introduces the various authentication tests, which are

derived from the theory of strand spaces. Authentication tests are a means of ensuring a

protocol is designed well enough to withstand common capabilities of penetrators, such

as those represented in the Dolev-Yao threat model [26].

 Next, this chapter gives a brief introduction into automated modeling tools that

represent potential candidates for automating the tests. The purpose of automating strand

space analysis is to show whether or not potential weaknesses exist within a given

protocol. If successful, this approach can provide a method for alleviating the tedium and

inaccuracy associated with pen-and-paper proofs. Finally, related work in the field of

strand space automation is discussed and their general results summarized.

5

2.2 Symmetric/Asymmetric Cryptography

 A brief review of symmetric/asymmetric cryptography is warranted since there is

frequent mention of ‘keys’ belonging to different parties throughout the remainder of this

thesis.

Symmetric Cryptography

 With the advent of the Caesar cipher over 3000 years ago, symmetric cryptography

was established as the first form of encryption. It is the use of a single key to perform

both encryption and decryption of messages. The concept works as follows:

 If Bob wants to send Alice a message, they have an agreed-upon key, which they will

use for encryption/decryption purposes. This key is most likely a mathematically

generated prime number, which when applied to an algorithm will generate cipher text

(the encrypted message). Alice or Bob can then take the cipher text, along with the same

key, plug it into the same algorithm and generate the original plain text (the unencrypted

message). Symmetric cryptography has the advantage of requiring only one key for both

encryption and decryption, but if compromised, all messages encrypted with that one key

are now in danger of being read by unintended parties!

Asymmetric Cryptography

 Asymmetric encryption utilizes two keys, a private and public key to encrypt/decrypt

a message. The public key is the receiver’s key that is freely made available to all

potential senders. The private key is the key owned by the receiver that is never shown to

anyone else. In this case, Alice has a private key, which only Alice knows, and Alice has

a public key, which is available to anyone. Similarly, users will entrust their public key

6

to Alice and keep their private key to themselves. Because Alice has another user’s

public key, Alice can encrypt a message with that public key. Once the message is sent,

only the owner of the corresponding private key can decrypt it. Asymmetric

cryptography has the advantage of guaranteeing that only the intended recipient of a

message can read that message, and does not require sharing private keys with anyone.

(This assumes one’s private key is not compromised.) However, asymmetric keys are

normally mathematically larger than symmetric keys so it is quite common for

asymmetric cryptography simply to be used to encrypt symmetric keys that are

distributed to intended recipients. Another more recent use for asymmetric keys is digital

signing. By encrypting only a portion of the message (e.g. hash of the message) with my

private key, then enclosing the total message in a symmetric key, I guarantee non-

repudiation of its origin. This means that whoever opens the message is assured of its

origin if the sender’s private key is not compromised because at this point, only the

sender’s public key opens the inner encrypted portion.

2.3 Strand Spaces and Security Protocols

 A strand space is a graph-theoretic representation of a security protocol. A security

protocol is the handshaking that occurs between different parties, within the context of

computer networks. The intent of the handshaking is to ensure authenticity of each party

to the others, that authorized persons only view a message’s content, and possibly to

generate and/or distribute session keys. Session keys are used temporarily for encryption

during time-sensitive conversations. Their advantage is that they expire; and if they are

not compromised, intercepting a message from one session is not mathematically

7

equivalent to a message from another session regardless of the contents in the message.

Their disadvantage is that they need to be generated for each new session. So, if there is

a weakness in the protocol, a penetrator might be able to ascertain how session keys are

being created. This very flaw is exploited in Needham-Schroeder [9].

 Authentication tests stem from an understanding of strand spaces. Therefore, the first

topic covered is strand spaces. Once it is shown how graphs are used to represent

protocols, the next logical step is to show how messages are formed and represented

along these graphs. This is where the concept of a test component is introduced. Then it

is explained how outgoing, incoming and unsolicited tests are derived from test

components and thus result in the formulation of the authentication tests.

2.3.1 Strand Spaces – Brief Overview

 To start, let’s assume for now that a protocol only consists of two parties

communicating with each other. Communication consists of a series of discrete events.

For example, Party A sends some sort of message to Party B. Party B receives that

message and maybe sends another back, etc. This process continues for whatever length

of time that given protocol requires. A strand is the sequence of events that occur

involving only one of the parties (A’s strand for this protocol: A sends a message, A

receives a message, A sends another message etc). A regular strand is identified as a

legitimate party’s strand. A strand space, shown as ∑, is the collection of all strands, or

sequences of events, that can occur between communicating parties. It is these ‘strand

spaces’ which form the basis of authentication tests [2]. The authentication tests are a

8

means of verifying whether a given protocol can successfully ensure proper (intended)

and secure communication between the parties.

 Messages that can be exchanged between communicating parties in a protocol are

called terms. Terms are elements of the set of messages, called A, which can be sent

between communicating parties. The set A is freely generated from two disjoint sets: T,

which represents text (nonces, names etc) and K, which represents keys. The generation

of A from these sets occurs through encryption, concatenation or both. We show

transmitted terms as being preceded by a positive (+) sign and received terms as being

preceded by a negative (-) sign. To further illustrate this, we’ll use t to represent a term

being sent then received by party A from our example above. In the above case, we

represent A sending the term as: + t and A receiving the term as: - t. Also, a term t is said

to be a subterm of t’, written as t ⊂ t’, if one can arrive at t’ by “repeatedly concatenating

[t] with arbitrary terms and encrypting with arbitrary keys.” [8] Encryption of a term is

written as: { t }Ka . If we want to show encryption from the use of a particular party’s

key, we write this as: { t }Ka meaning the term is encrypted with A’s public key. A’s

private key is denoted Ka
-1. To represent symmetric cryptography, encryption with a key

shared by A and B is shown as { t }Kab.

 Strand spaces are based on graph theory (Figure 2.1). A graph consists of edges and

vertices. The vertices represent communication events, also called nodes. If s is a strand,

then we represent the ith node along that strand as n = <s, i>. There are two kinds of

edges: successive events (nodes) within a strand (shown with the double arrow: ⇒) and

communication between nodes on two separate strands (shown with the single arrow:

9

→). The graph will be acyclic since events cannot go back and precede events that have

already occurred. The relation between nodes on the same strand is represented as n ⇒+

n’ where n = <s, i>, n’ = <s, j> and j > i. The relationship between inter-communicating

nodes, meaning nodes from separate strands, is denoted as n → n’ where term(n) = +t and

term(n’) = -t. Finally, a bundle is defined as a section of the strand space that is large

enough to represent a full protocol exchange. Figure 2.1 demonstrates an example of a

bundle, although in this case, the bundle consists of essentially the protocol itself.

A {Na, A}Kb B
• ⎯⎯⎯⎯⎯⎯⎯→ •

 ⇓ {Na, Nb}Ka ⇓
• ←⎯⎯⎯⎯⎯⎯⎯ •

 ⇓ {Nb}Kb ⇓
• ⎯⎯⎯⎯⎯⎯⎯→ •

Figure 2.1 - Needham-Schroeder Protocol

 This brief introduction into the notation used in strand space analysis suffices to

demonstrate how a protocol is represented. Later in this chapter, this notation is used to

show the Kerberos protocol (Figure 3) in detail. Next, incoming and outgoing tests are

described. These tests are the foundation of the authentication tests.

2.3.2 Understanding the Penetrator

 First, to help understand why the authentication tests are important, it is now

necessary to explain what the tests help protocol designers guard against. The penetrator

is understood to be the person(s) who is trying to perform any unwanted action during an

exchange. Dolev-Yao [26] have formalized what are understood to be widely accepted

10

capabilities of the penetrator. This formalization is termed the Dolev-Yao threat model.

Because the focus here is not on the mathematical soundness of encryption, it is

understood that the penetrator is actually a legitimate party on the network simply out to

do no good, so we term this person: Malice. What can Malice do?

• Malice can obtain any message passing through the network

• Malice is a legitimate user and can initiate conversations, and is expected at one

time, to be a recipient of an initiated conversation

• Malice can impersonate any principal and thus send messages on their behalf to

any other principle on the network

Dolev-Yao also explicitly state what Malice can not do:

• Malice cannot guess a random number (i.e. the mathematics of the encryption is

assumed to be ideal)

• Malice cannot decrypt properly encrypted messages without possessing the proper

key; Malice cannot generate encrypted text on behalf of a user without his or her

proper key

• Malice cannot ascertain the correct corresponding private key of any other user’s

public key

2.3.3 Authentication Tests

 Now that we understand what we are guarding against, we can move onto the

authentication tests themselves. To understand the authentication tests it is necessary to

understand three simple tests: outgoing, incoming and unsolicited [4]. It is these three

tests that form the foundation of the authentication tests.

11

 The key component that these tests work with is called a test component. The formal

definition of a test component is shown below [4]:

 Definition: t = {h}k is a test component for a in n if:

1. a ⊂ t and t is a component of n;

2. The tem t is not a proper subterm of a component of any regular node

n′ ∈ ∑.

 What this states in laymen’s terms is that a principal generates some a, and it is a’s

existence in a component that differentiates between a routine component and a test

component. The transmission or reception of this test component is how we ascertain

whether an incoming, outgoing or unsolicited test occurred.

 An “outgoing test for a in t” is when a test component t that contains a uniquely

originating value a is sent out and a is received back in cryptographically altered form

called t’ (Figure 2.2); (cryptographically altered form means that the initial message is

decrypted by someone possessing the proper key and subsequently altered) the

conclusion is that an authorized recipient received the message, decrypted it, extracted

the value a and transmitted it back. This conclusion relies on the assumption that the

decryption key, K-1, is safe, or not compromised by an attacker, and therefore only a

regular (authorized) user could perform the decryption. The uniquely originating value,

in this case a, which is a very large randomly generated number, has very little chance of

being guessed by another party. The uniquely originating term is indicated by the * and

12

we represent the outgoing test as: {…a…}K ~ …a… where a is the uniquely originating

value.

 A *a ⊂ {h}K = t
• −−−−−−−−−→

 ⇓ a ⊂ t′
• ←−−−−−−−−−

Figure 2.2 - Outgoing Test

Coincidentally, the creation of this unique number is very common. A regular use of this

unique value is as a nonce or numbers once; because of their size and randomness, they

are commonly used as session keys. The unaltered portion of the message is this

uniquely created value because it is possible that the intended recipient concatenates

other values to the original message. With regard to the graph representation, the part of

a strand that receives a and sends it back altered is referred to as a transforming edge.

The part of a strand that sends a out and receives it back altered is referred to as a

transformed edge. A transformed edge containing a uniquely originating term in the

sending node is called a test.

 The incoming test works in a similar fashion. Given some a transmitted in either plain

or encrypted form, if it is received back unaltered but within a test component properly

encrypted by an uncompromised symmetric key, we conclude that a regular recipient

performed the encryption. We write this as: …a… ~ {…a…}Kab. The unsolicited test is

inherently weaker in nature. It states that whenever a test component { t }K is received,

assuming that symmetric key K is safe, then the term could only have originated on a

regular strand. Since the graphical representation of the protocol is acyclic, this

13

originating node is located somewhere before the reception node. We show this as: ~

{…a…}Kba. These three tests provide the groundwork for understanding how the

authentication tests work. Since the purpose of this research is to generate a tool that

automates security protocol verification, the following are the formal definitions for

authentication tests and are drawn directly from [2]:

Authentication Test 1: Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be an outgoing

test for a in t.

 1. There exist regular nodes m, m′ ∈ C such that t is a component of m and m ⇒+ m′ is

a transforming edge for a.

 2. Suppose in addition that a occurs only in component t1 = {h1}K1 of m′, that t1 is

not a proper subterm of any regular component, and that K1¯¹ ∉ P. Then there is a

regular node with t1 as a component.

Authentication Test 2: Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be an incoming

test for a in t′. Then there exist regular nodes m, m′ ∈ C such that t′ is a component of m′

and m ⇒+ m′ is a transforming edge for a.

Authentication Test 3: Let C be a bundle with n ∈ C, and let n be an unsolicited test for

t = {h}K. Then there exists a positive regular node m ∈ C such that t is a component of

m.

14

2.3.4 Tests Applied to Needham-Schroeder

 This section shows how these tests are visible in an actual Protocol. Although the

Needham-Schroeder is described later on in great detail, it serves as a good tool to further

understand how the tests work.

A {Na, A}Kb = t B
• ⎯⎯⎯⎯⎯⎯⎯→ •

 “Transformed Edge”→ ⇓ {Na, Nb}Ka = t’ * ⇓ ←”Transforming Edge”

 *= t’ w/ respect to A,= t w/ respect to B

• ←⎯⎯⎯⎯⎯⎯⎯ •
 ”Transforming Edge”→ ⇓ {Nb}Kb = t’ ⇓ ←”Transformed Edge”

• ⎯⎯⎯⎯⎯⎯⎯→ •

Figure 2.3 – Annotated Needham-Schroeder

Working from Figure 2.3, in the first line, A is sending his test component out. The

message {A Na}Kb is valid as a test component for reasons described in Section 2.3.3.

(The a in this example is represented by Na.) The component is received by B, who then

transforms the term through decryption, alteration and re-encryption (only the end result

is shown). With respect to the SSM, this constitutes the transforming edge. A’s receipt

of this new component, with respect to the SSM, is the transformed edge. The receipt of

this new component in this protocol represents two actions: The first is the completion of

A’s outgoing test and the second is B’s transmission of his own test component. Because

A has received his test component back altered, only through proper decryption, he can

infers a proper principal performed the transformation thus completing his outgoing test.

A then takes over the role as ‘transforming edge’ with respect to B’s test component: {Na

15

Nb}Ka, with the a, for B’s test component, represented as Nb. A decrypts, alters and re-

encrypts B’s test component, then retransmits the new component back to B. Once B

receives his new component back, he goes through the same evaluation proofs as A and

thus concludes a proper principal performed the transformation and concludes an

outgoing test has occurred.

2.4 Security Protocol Examples

 The strand space methodology enables the modeling of security protocols as graphs.

This section describes two security protocols represented in the context of strand spaces.

The two protocols are: Needham-Schroeder [2] and Kerberos [13]. However, in an effort

to illustrate the use of strand spaces with a particular protocol, more emphasis is placed

on the Needham-Schroeder protocol as this protocol is routinely studied and analyzed in

the context of strand spaces [2, 4 and 5].

2.4.1 Types of Protocols

 Clark and Jacob identify basic categories that protocols fit into: Symmetric or

Asymmetric cryptography, employing either trusted third parties or simply two

communicating principals [29]. For the purpose of this research only the main three

protocol types are reviewed. They are: Symmetric Key with Trusted Third Party,

Symmetric Key without Trusted Third Party and Public Key. Symmetric key with trusted

third party is demonstrated in the Kerberos protocol. In this protocol, the session keys

are generated by a server and then distributed to the requesting parties. There exists an

16

understanding that each party has its own secure symmetric key for use when

communicating with the server.

 The symmetric key without trusted third party is best demonstrated in challenge-

response protocols. The way Needham-Schroeder is shown in Figure 2.1, it could be

construed as a challenge response protocol had the keys been symmetric vice

asymmetric. The reason is, had the keys been symmetric, it would imply that the

communicating parties each had prior knowledge of the key they intend to use with no

server generating it for them. However, Needham-Schroeder does use asymmetric

cryptographic techniques with a trusted third party.

2.4.2 Needham-Schroeder Protocol

 The Needham-Schroeder [24] public key protocol is represented in Figure 2.1. Later

in Chapter 4, this protocol is shown with the server. A description of the protocol

represented in Figure 2.1 is as follows: The parameters A and B represent

communicating principals. The parameter N represents a nonce. The letter following K

is indicating which node’s public key is used. In the Needham Schroeder protocol, A

sends B a nonce encrypted with B’s public key. Along with this, A sends B his signature;

in this case a signature is simply some agreed upon identifier which each party can use to

know who they are speaking to. Node B decrypts the message and replies by sending A

the original nonce along with a new nonce generated by B, all encrypted with A’s public

key. Node A decrypts the message and sends B his nonce back, encrypted with B’s public

key. Once these events happen, it is now understood that A and B are communicating.

However, it is not implied that this is a secure sequence of events. In fact, it is shown [9,

17

2 and 5] that strands termed penetrator strands are capable of infiltrating a session. The

penetrator strand represents an unauthorized party who has infiltrated a session. The

effect of infiltration varies significantly based upon the importance or sensitivity of the

session.

2.4.3 Penetration of Needham-Schroeder Defined

 The penetration of the Needham-Schroeder occurs as follows [Figure 2.4]: Assume

that A wants to talk to another party. In this case, we’ll call that party P. A then initiates

a conversation with P, who then encrypts/forwards A’s information over to party B. Party

B, thinking A initiated a conversation with him, will then answer the challenge with a

reply, and also issue his own challenge. A receives this message and assumes it came

from P and then replies to P with the correct response. P then encrypts/forwards this new

information over to B who sees it as the correct information.

A {Na, A}Kp P {Na, A}Kb B
 • ⎯⎯⎯⎯⎯⎯⎯→ • ⎯⎯⎯⎯⎯⎯⎯→ •

 ⇓ {Na, Nb}Ka ⇓
 • ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ •

 ⇓ {Nb}Kp {Nb}Kb ⇓
 • ⎯⎯⎯⎯⎯⎯⎯→ • ⎯⎯⎯⎯⎯⎯⎯→ •

Figure 2.4 - Needham-Schroeder Penetrated

 Now, both parties are convinced they are talking to their intended audience. However,

P now has the nonces from each party and is able to eavesdrop on a conversation between

A and B or simply converse with B while impersonating A. In [9], Lowe proposes that

B’s reply contain his identifier: ({ Na, Nb, B}Ka). This will allow A to see that

18

somehow his information is going to an unintended party and deduce that P is probably

malicious.

2.4.4 Kerberos

 Kerberos is an authentication service for open network systems first proposed by

Miller and Neuman [14]. It involves three principals: user, client and server. The basic

process works as follows. A user desiring a service or program contacts the client. The

client can be anything from a program to a person. The client then contacts the server on

behalf of the user. Kerberos, using private key encryption, derives a private key from the

users’ password. This key, along with all other users’ keys, is stored in a Kerberos-

managed database. Any network service requiring authentication is registered with

Kerberos. Also important to note, Kerberos maintains a list of registered clients, which

corresponds with a particular key. What is evident here is that Kerberos acts as the

middleman between registered clients. Another role Kerberos plays is the generation of

session keys. Unlike the private keys, session keys are only temporary keys used within

a limited timeframe, as stated earlier; nonces are often used for session keys.

 It is now demonstrated how Kerberos handles a request for communication between

two parties. A first requests a session key from the authentication server that it can then

use to communicate with B. The session key is a uniquely originating key, which is

ideally used for only one session. First, A sends the authentication server, AS, its identity

and the identity of whom it wants to communicate with. AS then generates a symmetric

session key, it encrypts the session key and B’s identity with A’s key. It then encrypts the

session key and A’s identity with B’s key (Figure 2.5). It then sends both encrypted

19

messages to A. At this point, A decrypts the session key encrypted with A’s key,

generates a time stamp, encrypts the time stamp with the newly acquired session key and

sends both packages off to B. Now, A and B are able to communicate in a secure fashion.

 With respect to the authentication tests, Kerberos uses the incoming and unsolicited

tests. This determination is made by the fact that A sends out plaintext and receives it

back properly encrypted. This is an example of the incoming test. With respect to

incoming tests, sending something out plain and receiving it back encrypted does not

imply symmetric cryptography; if that protocol uses asymmetric cryptography then any

party can encrypt a plain message with a public key and one cannot conclude an

incoming test occurred because you cannot be sure who did the encrypting. However in

Kerberos, A shares a symmetric key with AS therefore we conclude the AS did the

encrypting. B receives an un-requested message properly encrypted by A; this is an

example of an unsolicited test. This protocol does not contain any outgoing tests, but it is

not a requirement that all tests be represented in a protocol. The presence of these tests

also does not guarantee that Kerberos is a ‘good’ protocol. The original Needham-

Schroeder contained outgoing tests with respect to both parties but still demonstrated a

serious flaw due to the contents of the messages themselves.

20

 A {A, B}Kas AS B
 • ⎯⎯⎯⎯⎯⎯⎯⎯→ •

 {A, SK}Kbs, {FS, SK}Kas⇓
 • ←⎯⎯⎯⎯⎯⎯⎯⎯ •
 ⇓ {A, SK}Kbs, {Time-stamp}SK

• ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ •

Figure 2.5 - Kerberos Communication Initialization

2.5 Related Work in the Automation of Security Protocol Verification

 Automating security protocol verification allows for quicker determinations of the

weaknesses and strengths of a particular protocol. Numerous researchers [11] have

proposed applying formal proof techniques towards the analysis of security protocols.

The next sections briefly cover key work that has been successful in the automation of

security protocol verification.

 The techniques employed in protocol analysis, covered in this review, typically fall

into two categories. They are model checking and theorem proving. In the model

checking approach, one searches for desired states by modeling the protocol and

executing it in every possible way. In the theorem proving approach, one creates a search

tree and checks for the existence of the theories in that tree at some state. The Multi-Set

Rewriting and Failure Divergence Refinement [22] checking typically fall into the model

checking camp. The Athena approach [11] falls into the theorem proving camp. The

approach in this research falls into the theorem approach because it automatically

identifies where the authentication test theorems can be applied.

21

2.5.1 Failure Divergences Refinement Checker

 Lowe [9] successfully analyses the Needham-Schroeder protocol using the Failure

Divergences Refinement Checker (FDR), which is a model checker for Communicating

Sequential Processes (CSP) [25]. CSP is a language that allows easy representation of

pattern interaction. Using CSP, Lowe tests whether a protocol achieves authentication.

In the case of an attacker being discovered [9], Lowe is also able to show that the fixed

protocol is secure.

2.5.2 Process Calculus

 In [1], Blanchet uses an extension of pi-calculus to represent protocols. Pi-calculus is

“a ‘process algebra’ in which channel names can act both as transmission medium and as

transmitted data” [23]. His results show promise in that automated protocol verification

can be done in less than one second. The user needs only to correctly code whatever

protocol they intend to evaluate. The tool, OCaml 3.04 [1], translates the protocol into

Horn clauses and then executes it against rules based on whatever that particular protocol

defines as a rule. This is obviously much faster than traditional methods of hand proving.

Blanchet also permits an unbounded number of sessions within the test, whereas previous

work has limited the number of session due to infinite state systems. On rare occasions

the algorithm will not terminate and it can even fail on correct protocols. However, it is

Blanchet’s conjecture that it will terminate for a large class of protocols.

22

2.5.3 Athena

 Athena is an automated checking algorithm that analyzes security protocols [12].

Athena implements a specialized logic for expressing security properties such as

authentication, secrecy and properties related to electronic commerce [12]. Athena works

by terminating and providing a proof on well-formed formulas or generating a counter

example on well-formed formulas that evaluate to false. Although there are other formal

techniques for analyzing security protocols [11], Athena differs in the sense that it can

directly evaluate the strand space model without succumbing to the state space explosion

[11, 2.5.1]. State space explosion occurs whenever there is an unbounded number of

initiators/responders and sessions thus creating an unreachable theorem [18]. Athena

uses ‘unreachability theorems’ to ‘prune’ the state space, thus reducing the number of

states and increasing the probability of terminating [12]. Another method Song uses to

reduce the state space is that of the Strand Space Model (SSM) [28]. By using the causal

relationships developed by Guttman in the SSM, Song is able to further prune the state

space. Song shows that although limited due to its inability to allow certain terms to be

encrypted, Guttman and Thayer’s tests are still effective in reducing the state space.

2.5.4 Security Modeling in Maude

 Object modeling software is another effective way to model protocol transactions.

One example of automated modeling software is Maude [19]. Maude was the intended

language for this research, but Java proved very effective. However, for future research

it is highly recommended that using Maude to automate authentication tests be

performed, as this is now explained. Developed primarily at the University of Illinois

23

and Stanford Research Institute, Maude’s purpose is stated as follows: “…supporting

formal executable specification, declarative programming, and a wide range of formal

methods as means to achieve high-quality systems in areas much as: software

engineering, networks, distributed computing, bioinformatics, and formal tool

development.” [19].

 Specifically, Maude is a “high-performance reflective language, which supports both

equational and rewriting logic specifications” [19]. Being a reflective language means

that Maude can program or manipulate itself [20]. Rewriting logic allows for concurrent

state computations. Although a protocol is pre-defined at run time, concurrent state

computations allows for rules or equational rewrites to occur simultaneously.

 In [27], Denker and Meseguer show how protocols can be effectively modeled using

object-oriented specification in Maude. The purpose of his work is to show that Maude’s

ability to perform rewritable logic and concurrent execution is helpful in uncovering

security flaws in protocols. The paper uses the Needham-Schroeder public key protocol

as the case study. Meseguer implements a bounded depth first search on multiple

instances of protocol runs. The depth first search shows efficient searching of possible

attacks on the multiple run is an effective means of ascertaining a weakness on a given

protocol. In this case, the weakness discovered by Lowe [9] is found using a depth first

search. In this example we see Maude being used as a model checker. However, Maude

can also be used for theorem checking. Because Maude is powerful enough to handle

either method of use, it allows for multiple means in which modeling the authentication

tests can be done.

24

2.5.5 Multi-Set Rewriting

 In [22], Cervesato et al. use multi-set rewriting to provide a means to specify ‘finite

length’ protocols. In his work, Cervesato uses the multi-set rewriting to extend the strand

space formalism. Through this he is able to model penetrator capabilities, as defined by

Dolev-Yao, and then relate the intruder theory to penetrator strands as defined within the

context of strand space modeling. This particular work serves as a means to further

understand the Dolev-Yao threat model.

2.6 Summary

 This chapter outlines what a strand space is and how it is represented using graph

theory notation. It then shows how this notation is used to represent a security protocol.

The Needham-Schroeder and Kerberos protocols were used to illustrate the use of strand

spaces. Next, three authentication tests were defined from [5]. There are three tests—

outgoing, incoming and unsolicited—and each has a theorem describing the guarantees it

provides. Finally, previous work in automating aspects of security protocol analysis has

been discussed.

25

III. Methodology

3.1 Chapter Overview

 The purpose of this chapter is to introduce the methods that are employed in

automating the authentication tests developed by Guttman et al [2, 5]. This chapter

describes the Security Protocol Analyzer (SPA) tool developed for the purpose of this

research. The chapter also shows SPA’s analysis of a representative set of known

protocols and basic examples in order to establish a baseline of reliability. In Chapter 4,

a much more diverse set of protocols is analyzed.

 This chapter is laid out in the following manner:

• Problem Review

• Overview of software used

• Java based protocol analysis

• Demonstration of tests in the following environments:

o Numerous one and two pass tests

o Needham-Schroeder

• Summary

3.2 Problem Review

 The problem that this research addresses is the effective automation of security

protocol analysis, and in particular, the automatic recognition of authentication tests as

defined by Guttman et al. Guttman et al have developed three authentication tests that

greatly simplify the tedious pen-and-paper proofs normally required to show if a security

26

protocol has certain correctness properties. This research takes the next step and

automates aspects of their work. In the previous chapter, these tests and correctness

properties have been defined and now the focus will shift to how occurrences of these

tests are automatically identified using a tool developed in Java.

3.3 Software Overview

 The Java-based protocol analyzer was developed using the Java development

environment TogetherSoft® version 6.0. This application was executed on a Windows®

2000 operating system. The version of Java that TogetherSoft® 6.0 employs is 1.3.1.

3.4 Java Based Protocol Analysis

 The protocol analyzer uses a traditional software development approach of object-

oriented programming. The analyzer uses dynamically created objects to represent

different component classes, such as Principals, Messages and Text. The next few

sections outline the algorithm and the specific techniques used in the creation of the tool.

3.4.1 Layout of Java Program

 The Java-based program, called Security Protocol Analyzer (SPA), can be divided into

two portions. The first portion is the parsing portion. The second portion is as the

analysis portion.

27

Table 1 – Brief Description of SPA classes

Class: Brief Description:

ProtocolAnalyzer Main driver of program. Contains main().

Encryption Checks encryption of messages against receiver and sender. Ensures
proper parties are viewing messages.

Protocol This is the root node of an abstract syntax tree representing a
protocol. It contains a list of Messages.

Message An instance of message is instantiated as each message is read in
from the input file. A message consists of a sender, a receiver and
the term sent.

Sequence Since messages exist as concatenations of terms, we call this a
sequence. This class contains an iterator which is traversed during
analysis on instances of Sequence.

Term The primary abstract class that enables Text, Encryption, and
Sequence to generically create functions for recursive use. Two key
methods for analysis, GetReadableText() and GetTextObj(), are
established here.

Text This class represents individual instances of each text. If tagged with
a * in the input file, a flag condition is set to show its new/fresh
characteristic.

Parser This class checks the syntax of the input file and verifies if it is legal
or not. It also builds an abstract syntax tree rooted at an instance of
the Protocol class.

Principal For each occurrence of a party within a protocol transaction, an
instance of principal is generated. Within it, the test conditions are
checked within the addnonce() method as components get passed.

 The main role of the parsing portion is to retrieve a file and import the contents into

“iterators” that the analyzer steps through and analyzes. It also builds the abstract syntax

tree (AST), which is traversed during the analysis portion. The parsing method could

have been done numerous ways therefore not much attention is given to the specifics in

this thesis but the authentication tests are strictly defined and hence that is where our

focus lies. Table 1 lays out brief descriptions of key classes in the SPA. Sections 3.4.2

28

and 3.4.3 go into detailed specifics of the more important operations and give a more

thorough description of the key classes as seen in the SPA class diagram, Figure 3.1.

 Figure 3.1 – Class Diagram of SPA

3.4.2 Description of Parsing Operation

 The parsing of the SPA is performed as follows: An input file (Figure 3.2) is parsed

line by line into an abstract syntax tree with a Protocol object as the root. A Protocol

consists of a list of Message objects. Each Message contains three portions: from, to and

the message itself. It is this list of messages that we walk through during the analysis

portion.

 A -> B : {A *Na1}Kb
 B -> A : {Na1 *Nb1}Ka
 A -> B: {Nb1} Kb

29

Figure 3.2 – Needham-Schroeder Protocol Input File

 Figure 3.3 shows an example of the abstract syntax tree created during the initial

parsing of a message. As seen in Figure 3.3, whenever a message is broken down, an

instance of Sequence, Encryption or Text is created. Due to the recursive structure of

message terms, within Encryption and Sequence lie further instances of Sequence,

Encryption or Text. The breakdown process continues recursively until individual Text

instances are all that remain. The parsing of the input file into AST’s completes the

initial run of the SPA with respect to the input file. The next operation performed is the

analysis portion.

Figure 3.3 – UML of Message Breakout

3.4.3 Description of Analysis Operation

 This section covers the key classes that perform the main analysis. The

ProtocolAnalyzer, Principal and Term classes are what drive the analysis portion of the

30

program. The ProtocolAnalyzer class contains the main() function and hence is the

driver for the program. The program makes several passes through the list of messages

during the analysis portion.

 The first pass through the message list checks for potentially disqualifying conditions.

For instance, one of the more common conditions is occurrence of an encrypted term

within another encrypted term, thus negating the inner one’s use as a test component in

accordance with criteria outlined by Guttman [5] and described in Chapter 2. The SPA

takes this encrypted term and stores it in a vector with any other disqualified encrypted

terms. If an encrypted term is not disqualified it is stored in another vector which

contains potential test components. Later on, these vectors are viewed to determine if a

component received by a Principal is disqualified as a test component or not.

 The second pass through the message list creates instances of the Principal class and

stores them in a vector. Recall that during the parsing process, each line of the input file

generates a from, to and message. The from and to are used to create these instantiations

of Principal. For example, using the example in Figure 3.2, in Figure 3.3 A and B are

created as different instances of Principal. However, the parser first checks to make sure

a previous existence of that Principal does not exist, that way only one instantiation per

principal occurs. By having individual instantiations for each participant in the protocol,

this allows each party to know what terms and components it has sent and received.

 The third pass is where actual analysis of individual terms occurs. Using Figure 3.2 as

an illustration, whenever the first line is analyzed, individual terms A and Na (parsed into

an AST as described earlier), are stored individually in a sent items vector of A’s

31

instantiation of Principal. B’s instantiation of Principal will store them in a received

items vector. As the SPA iterates through the list of messages, each principal, depending

on its role as sender or receiver, checks its vectors of sent and received items and then

applies the rules of the tests against that item. With respect to Figure 3.2, the SPA

output generated is shown in Figure 3.4. This serves as a good overview regarding the

analysis operation but there are two key functions that allow this to operate so effectively.

 The first key function is the GetReadableText() function. The analyzer calls the

GetReadableText() function initially in main() to initiate the third pass, but as described

shortly, the SPA actually traverses the tree through recursive calls of GetReadableText().

This recursion happens because the GetReadableText() function is an abstract function

stemming from abstract class Term. In order to allow more effective analysis without

duplication of functionality, Term was developed as an abstract class from which

Encryption, Text and Sequence are all extended. As the analyzer starts at the top of the

AST, based on whatever instantiation lies at that particular node, the SPA knows what

class’ GetReadableText() function to call. From within this Term, it steps down to the

next node and the SPA then calls that particular instance of GetReadableText(). This is

especially important for encrypted terms. If the analyzer is on an encrypted node, it will

determine if the receiver can view the message through string comparisons on the key

and Principals identity (For example: Ka is viewable by A only). As the analyzer steps

further down the tree, based on the results of whether a Principal can read the encrypted

portion or not, the analyzer will know which information to pass into that Principals

instantiation, thus, a received item, if not readable, will not be entered into a receiver’s

32

vector of received terms! (The actual addition of individual text into a principals’

relevant vectors is done through the addNonce() function, described shortly.) Once the

end node of the AST is reached, we know from earlier that this will be an instance of an

individual Text. At this point, when GetReadableText() is called, the values of the

arguments at this point are now ready to be added directly into each Principal’s relevant

vectors.

 Within the Text class’ GetReadableText() function is called the other key function:

addNonce(). AddNonce() is a method of the Principal class that is only called from

within each individual instance of Text. In addNonce(), the following arguments get

passed in: the vectors of bad test components, good test components, the name of the

individual Text currently being analyzed, as determined by being at the bottom of the

AST, and whether or not the sender/receiver can read the individual Text.

GetReadableText() of that particular instance of Text will traverse the vector of Principals

then whenever sender and receiver get matched, that particular Principal has its

addNonce() function called. It is within addNonce(), since we are getting all the key

information at this time for this particular Text, that the existence of the tests with

relation to this particular Text are determined. The determination of the existence of tests

follows strictly the criteria defined by Guttman [5] and covered extensively in Chapter 2.

3.5 Specific Protocols analyzed using Java

 In this section, the SPA is tested with simple input to demonstrate its ability to find

examples of the authentication tests under a variety of basic conditions. For example,

simple one-pass and two-pass runs are performed using both asymmetric and symmetric

33

cryptography. The chapter then culminates with the SPA running the Needham-

Schroeder protocol in both a normal setting and a setting with intentional flaws. Once

these tests are completed, a reliable baseline is established for use of the SPA in

identifying occurrences of outgoing, incoming and unsolicited tests in unfamiliar

protocols.

3.5.1 Verifying Presence of Tests

 In the first example, A executes an incoming test. A sends out plain text and receives

it back properly encrypted with a symmetric key, thus completing an incoming test. The

layout for all tests is similar in nature. The SPA shows encryption keys used then

proceeds to identify the existence of any tests or errors.

File Contents:
A -> B : *Na1 A
B -> A : {Na1 B}Kab

<Parties> : <Message> >> A -> B : *Na1 A
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear.

<Parties> : <Message> >> B -> A : {Na1 B}Kab
Encrypt term(s) < Na1 B > with key Kab is readable by both sender/receiver.
The unencrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Kab
Incoming test for A because fresh term Na1 was sent out earlier in < Na1 >

 In this example, a simple two-pass run of an outgoing test is demonstrated:

File Contents:
A -> B : {*Na1 A}Kab
B -> A : Na1 B

<Parties> : <Message> >> A -> B : {*Na1 A}Kab
Encrypt term(s) < *Na1 A > with key Kab is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.
Unsolicited test for B because of nonce Na1 within test component < {Na1 A}Kab >

<Parties> : <Message> >> B -> A : Na1 B
The encrypted/fresh nonce Na1 has been received back in new component: Na1

34

Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kab >

 In the first pass, the SPA identifies what key is used for encryption and states which

parties can view that part of the message. Then, it states that the sender may be initiating

an outgoing test. Also, based on the use of symmetric cryptography, as indicated by the

key format, it also indicates the presence of an unsolicited test from B’s perspective. B

transforms the message through decryption, once again, assuming the key is safe, then

retransmits it back to A. Finally, it shows A completing an outgoing test because he is

receiving his fresh nonce back in altered form.

 In the below example, a simple case of nested encryption is used to demonstrate

another example of an outgoing test. In this case, A’s fresh nonce is inside an encrypted

term, which is itself encrypted. On the first pass, the SPA shows both terms’ encryption

keys and states how A is attempting to initiate an outgoing test. On the second pass, the

SPA verifies that A has completed his outgoing test. Notice on this pass there is no

unsolicited test because the communicating parties are using asymmetric cryptography,

as indicated by their key format. Recall from Chapter 2, all public keys are assumed to

be compromised. Also, although not shown by the SPA, the validity of this test depends

on B’s private key not being compromised.

File Contents:
A -> B : A {{*Na1}Ka}Kb
B -> A : {Na1}Ka

<Parties> : <Message> >> A -> B : A {{*Na1}Ka}Kb
Encrypted term(s) < {*Na1}Ka > with key Kb is readable by recipient only.
Encrypted term(s) < *Na1 > with key Ka is readable by sender only.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.

<Parties> : <Message> >> B -> A : {Na1}Ka
Encrypted term(s) < Na1 > with key Ka is readable by recipient only.

35

The encrypted/fresh nonce Na1 has been received back in new component: {Na1}Ka
Outgoing test for A because fresh term Na1 was sent out earlier in < {{Na1}Ka}Kb >

 The next example is a more common example of what one would expect during a

routine transaction using symmetric cryptography. In the example, it shows the

unsolicited test that exists due to the symmetric cryptography used, as indicated by the

key format used, but more importantly because of the valid test component received by

B. The only thing to note here is the phrase incoming/outgoing test. This is not a new

test. Recall from Chapter 2, the outgoing test is sent out encrypted and received back

altered, possibly unencrypted; the incoming test is sent out in either format but received

back encrypted. Therefore, this example fulfills the requirements of both tests and could

be called either, thus it is termed an outgoing/incoming test!

File Contents:
A -> B : {*Na1 A}Kab
B -> A : {Na1 B}Kab

<Parties> : <Message> >> A -> B : {*Na1 A}Kab
Encrypt term(s) < *Na1 A > with key Kab is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.
Unsolicited test for B because of nonce Na1 within test component < {Na1 A}Kab >

<Parties> : <Message> >> B -> A : {Na1 B}Kab
Encrypt term(s) < Na1 B > with key Kab is readable by both sender/receiver.
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Kab
Outgoing/Incoming test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kab >

 In this next example, it appears as though there should be a simple incoming test.

However, this is not the case. A sends out an unencrypted fresh term and receives it back

encrypted. The SPA indicates that principal A may be attempting to initiate an incoming

test; however, because everyone knows public keys, A cannot be sure who encrypted his

plain text. The SPA’s adherence to the notion of compromised public keys, as discussed

in Chapter 2, disallows a completed incoming test.

36

File Contents:
A -> B : *Na1 A
B -> A : {Na1 B}Ka

<Parties> : <Message> >> A -> B : *Na1 A
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear.

<Parties> : <Message> >> B -> A : {Na1 B}Ka
Encrypted term(s) < Na1 B > with key Ka is readable by recipient only.

 The final example is very similar to the earlier one in which a term is sent out

encrypted and received back altered. This represents an outgoing test for A because test

component {*Na1 A}Kb is transmitted to B. B receives the test component, based on the

input file composition, transforms the test component into {Na1 B}Ka and transmits it

back to A. Since encryption is correct and private keys are assumed safe, we see a valid

instance of an outgoing test.

File Contents:
A -> B : A {*Na1 A}Kb
B -> A : B {Na1 B}Ka

<Parties> : <Message> >> A -> B : A {*Na1 A}Kb
Encrypted term(s) < *Na1 A > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.

<Parties> : <Message> >> B -> A : B {Na1 B}Ka
Encrypted term(s) < Na1 B > with key Ka is readable by recipient only.
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Ka
Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kb >

3.5.2 Analyzing Needham-Schroeder

 The above examples showed different examples of the outgoing, incoming and

unsolicited tests. In this section we expand upon this by running an actual protocol

through the SPA. The result of normally operating the Needham-Schroeder protocol in

the SPA confirms the previously known existence [5] of outgoing tests in the protocol.

Figure 3.4 shows the entire output for the original Needham-Schroeder protocol.

37

A -> B : {*Na1 A}Kb
B -> A : {Na1 *Nb1}Ka
A -> B : {Nb1}Kb

<Parties> : <Message> >> A -> B : {*Na1 A}Kb
Encrypted term(s) < *Na1 A > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.

<Parties> : <Message> >> B -> A : {Na1 *Nb1}Ka
Encrypted term(s) < Na1 *Nb1 > with key Ka is readable by recipient only.
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 Nb1}Ka
Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kb >
Sender may be attempting to initiate an outgoing test by transmitting Nb1 in encrypted form.

<Parties> : <Message> >> A -> B : {Nb1}Kb
Encrypted term(s) < Nb1 > with key Kb is readable by recipient only.
The encrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kb
Outgoing test for B because fresh term Nb1 was sent out earlier in < {Na1 Nb1}Ka >

Figure 3.4 – Output of running Needham-Schroeder in SPA

 Although there are no surprises here, it is important that an actual protocol was run.

From this, we are now able to move forward and test protocols where outcomes may not

necessarily be expected. The final test is to run the Needham-Schroeder protocol in

slightly altered form, then using already known results [5], verify that the analyzer

generated the correct results.

 In this next test we present an altered form of Needham-Schroeder. In Figure 3.5, we

see several different erroneous/mischievous activities being performed. The first is

principal C trying to resend a previous message. The SPA generates no notice on this

because it cannot assume this was intentional. It may simply be acting as a relay. From

the legitimate test, it recognizes that A has received his fresh nonce back and therefore

won’t reregister this as another outgoing test. The next activity is that of B trying to

initiate a conversation using A’s old nonce; once again no test is registered. These

duplicate transactions do occur several more times but to no avail.

38

A -> B : {A *Na}Kb
B -> A : {Na *Nb}Ka
C -> A : {Na Nb}Ka
B -> A : {B Na}Ka
A -> B : {Na}Kb
A -> B : {Nb}Kb
A -> C : {Nb}Kc

<Parties> : <Message> >> A -> B : {A *Na}Kb
Encrypted term(s) < A *Na > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.

<Parties> : <Message> >> B -> A : {Na *Nb}Ka
Encrypted term(s) < Na *Nb > with key Ka is readable by recipient only.
The encrypted/fresh nonce Na has been received back in new component: {Na Nb}Ka
Outgoing test for A because fresh term Na was sent out earlier in < {A Na}Kb >
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.

<Parties> : <Message> >> C -> A : {Na Nb}Ka
Encrypted term(s) < Na Nb > with key Ka is readable by recipient only.

<Parties> : <Message> >> B -> A : {B Na}Ka
Encrypted term(s) < B Na > with key Ka is readable by recipient only.

<Parties> : <Message> >> A -> B : {Na}Kb
Encrypted term(s) < Na > with key Kb is readable by recipient only.

<Parties> : <Message> >> A -> B : {Nb}Kb
Encrypted term(s) < Nb > with key Kb is readable by recipient only.
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kb
Outgoing test for B because fresh term Nb was sent out earlier in < {Na Nb}Ka >

<Parties> : <Message> >> A -> C : {Nb}Kc
Encrypted term(s) < Nb > with key Kc is readable by recipient only.

Figure 3.5 – Output of NS with duplicate transmission of nonce

We learn from this example that the SPA is not being fooled with repetitive transactions.

However, it is catching and printing the existence of the two legitimate outgoing tests that

occur. As one can see, there are numerous ways to arrange the order of these tests and

the components within, but at this point we can be fairly certain the SPA is capable of

finding the tests.

39

3.6 Summary

In conclusion, this chapter covered in detail the basic operation of the SPA.

Numerous test cases and the Needham-Schroeder protocol were run and we use them to

establish a baseline of reliability. Finally, there was a modification done to the Needham-

Schroeder protocol to show that obvious mistakes in a transaction, whether intentional or

not, could be captured. As a result of these tests, we’ve shown that the SPA is capable of

detecting instances of incoming, outgoing and unsolicited authentication tests as well as

basic improper events occurring during the course of a protocol run. We also introduce

something termed outgoing/incoming test, which is the case where a received term meets

criteria for both outgoing and incoming tests as described in chapter two. In the next

chapter, we will expand upon this and run the SPA against numerous protocols that

exhibit numerous characteristics.

40

IV. Analysis and Results

4.1 Chapter Overview

 This chapter demonstrates the results of running the SPA on several regular protocol

runs. These tests show if any authentications tests occur in the protocol and where.

Following the discussion of normal protocol runs, several more ‘incorrect’, or seemingly

incorrect, protocol runs are investigated. The purpose of creating incorrect protocols is to

show that the SPA is capable of discovering erroneous scenarios that may occur in

protocols. The means by which these particular scenarios are chosen is discussed later.

4.2 Results of Protocol Analyses

 This section covers the overall results of running known protocols. As discussed

earlier, protocols are grouped into categories. Categories can be broken up into protocols

that use symmetric cryptography verse asymmetric cryptography. Another category is

protocols which use trusted verse non-trusted third parties. Although there do exist

hybrid protocols, the protocols chosen most assuredly fit into the above categories. The

layout of the protocols is taken almost directly from [29].

 In Chapter 3, outgoing, incoming and unsolicited tests output is shown in great detail.

In this section, since testing occurs on large established protocols, previously unseen

output is displayed. Although warnings and errors are self explanatory, there is another

test condition that is introduced that may not be self-evident. The test is called a pseudo-

unsolicited test. This test does not alter the definition of an unsolicited test in any way,

but what it does do is show how one party is receiving a challenge from another that it

41

has previously sent a message to. In other words, because both parties understand the

protocol, A may expect something back from B, in one case, the minimum reply might be

A’s fresh nonce. However, simultaneously if B solicits a challenge of his own, A must

now reply with the correct answer. The reason for the slight name change is based upon

the generic nature of the analyzer. This analyzer is able to review any protocol without

knowing how the protocol works. But because of this, it does have to keep track of

intercommunicating parties and know who is sending what to whom but does not

necessarily know that a reply or request is part of the protocol. Therefore, because a

party has sent something to another means receiving something back from the party is not

necessarily ‘unsolicited’.

4.2.1 Wide Mouth Frog Protocol

 The wide mouth frog protocol (Figure 4.1) involves the use of symmetric

cryptography in conjunction with a trusted third party. In this protocol, the initiating

principal generates a temporary session key, along with a timestamp. These are passed to

the server, along with the identification of the party in which the initiating principal

wishes to communicate. The server then passes the timestamp and session key onto the

intended recipient.

 The SPA recognizes all known tests. In the first message it correctly identifies the

fact that A may be attempting to initiate two different outgoing tests. This does not mean

they are completed; only that A is transmitting a legitimate test component that contains

two fresh terms. S’s receipt of this valid test component with two fresh terms inside and

the use of proper symmetric cryptography mean there exists two unsolicited tests from

42

S’s perspective. In the second pass, S has created his own test component containing a

fresh nonce and thus may be initiating his own outgoing test. From B’s point of view, the

receipt of this test component with two fresh terms, one generated by S and the other by

A, means B has two unsolicited tests. In this example, the SPA accurately detects all

relevant tests that occur as shown in Figure 4.1.

A -> S : A {*Na1 B *Kab}Kas
S -> B : {*Ns1 A Kab}Kbs

<Parties> : <Message> >> A -> S : A {*Na1 B *Kab}Kas
Encrypt term(s) < *Na1 B *Kab > with key Kas is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.
Unsolicited test for S because of nonce Na1 within test component < {Na1 B Kab}Kas >
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.
Unsolicited test for S because of nonce Kab within test component < {Na1 B Kab}Kas >

<Parties> : <Message> >> S -> B : {*Ns1 A Kab}Kbs
Encrypt term(s) < *Ns1 A Kab > with key Kbs is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Ns1 in encrypted form.
Unsolicited test for B because of nonce Ns1 within test component < {Ns1 A Kab}Kbs >
Unsolicited test for B because of nonce Kab within test component < {Ns1 A Kab}Kbs >

Figure 4.1 -Wide-Mouth Frog Protocol

4.2.2 Yahalom Protocol

 In the Yahalom protocol, the SPA starts out by showing how principal A is initiating

an incoming test by sending out a fresh term. The next message shows how B is

initiating his own outgoing test and at the same by doing so, an unsolicited test occurs for

the server, represented as S. Also, an unsolicited test occurs for nonce Na because it is

still fresh from S’s view and it exists within a valid test component. The next step then

shows how A gets its nonce, Na, back; thus completing the run of its incoming test. At

the same time, it shows an unsolicited test for A because of a fresh term within a valid

test component from S. In this pass, the first warning is generated. S has generated one

43

key and is transmitting it in two separate components. Because of this, if S were to get

back one of these keys, it can not be certain from whom and therefore they are

invalidated as a test component with regard to outgoing tests. The final message sees an

unsolicited test for B as well as B’s receipt of his fresh nonce back completing a run of an

outgoing/incoming test.

 The significance of running Yahalom in the SPA is that the SPA is challenged with

multiple parties, multiple test cases and an encounter with its first negated test component

and warning message. The results of the SPA were expected so therefore we conclude

that it has successfully completed analysis of this protocol.

A -> B : A *Na
B -> S : B {A Na *Nb}Kbs
S -> A : {B *Kab Na Nb}Kas {A *Kab}Kbs
A -> B : {A Kab}Kbs {Nb}Kab

<Parties> : <Message> >> A -> B : A *Na
Sender may be attempting to initiate an incoming test by transmitting Na in the clear.

<Parties> : <Message> >> B -> S : B {A Na *Nb}Kbs
Encrypt term(s) < A Na *Nb > with key Kbs is readable by both sender/receiver.
Unsolicited test for S because of nonce Na within test component < {A Na Nb}Kbs >
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.
Unsolicited test for S because of nonce Nb within test component < {A Na Nb}Kbs >

<Parties> : <Message> >> S -> A : {B *Kab Na Nb}Kas {A *Kab}Kbs
Encrypt term(s) < B *Kab Na Nb > with key Kas is readable by both sender/receiver.
Unsolicited test for A because of nonce Kab within test component < {B Kab Na Nb}Kas >
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.
The unencrypted/fresh nonce Na has been received back in new component: {B Kab Na Nb}Kas
Incoming test for A because fresh term Na was sent out earlier in < Na >
Unsolicited test for A because of nonce Nb within test component < {B Kab Na Nb}Kas >
Encrypted term(s) < A *Kab > with key Kbs is readable by sender only.
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an
outgoing test.
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted
form.

<Parties> : <Message> >> A -> B : {A Kab}Kbs {Nb}Kab
Encrypted term(s) < A Kab > with key Kbs is readable by recipient only.
Unsolicited test for B because of nonce Kab within test component < {A Kab}Kbs >

44

Encrypt term(s) < Nb > with key Kab is readable by both sender/receiver.
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kab
Outgoing/Incoming test for B because fresh term Nb was sent out earlier in < {A Na Nb}Kbs >

Figure 4.2 – Yahalom Protocol

4.2.3 Woo-Lam Protocol

 In this section, the Woo-Lam protocol is examined. From this point onward, rather

than explain line by line each protocol, only key events of the protocol and the SPA’s

conclusions are discussed. In Woo-Lam, which is already identified to have a flaw [5],

the SPA recognizes two tests. The first is the completed incoming test from B’s view.

The second is the unsolicited test from the servers’ point of view. However in Guttman’s

work, [5], he concludes that their does not exist a legitimate incoming test. This

reasoning is based on the notion that another node could produce a received component

of the same form. Since the SPA performs tests based on string comparisons, in a test

like this, type comparisons would be more beneficial. Hence, a model checking language

may prove more effective in this type of scenario.

A -> B : A
B -> A : *Nb1
A -> B : {Nb1}Kas
B -> S : {A {Nb1}Kas}Kbs
S -> B : {Nb1}Kbs

<Parties> : <Message> >> A -> B : A

<Parties> : <Message> >> B -> A : *Nb1
Sender may be attempting to initiate an incoming test by transmitting Nb1 in the clear.

<Parties> : <Message> >> A -> B : {Nb1}Kas
Encrypted term(s) < Nb1 > with key Kas is readable by sender only.

<Parties> : <Message> >> B -> S : {A {Nb1}Kas}Kbs
Encrypt term(s) < A {Nb1}Kas > with key Kbs is readable by both sender/receiver.
Encrypted term(s) < Nb1 > with key Kas is readable by recipient only.
Unsolicited test for S because of nonce Nb1 within test component < {Nb1}Kas >

45

<Parties> : <Message> >> S -> B : {Nb1}Kbs
Encrypt term(s) < Nb1 > with key Kbs is readable by both sender/receiver.
The unencrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kbs
Incoming test for B because fresh term Nb1 was sent out earlier in < Nb1 >

Figure 4.3 – Woo-Lam Protocol

4.2.4 Neuman-Stubblebine Protocol

 The next protocol reviewed is the Neuman-Stubblebine protocol. In this test, two

different scenarios are executed. The first (Figure 4.4) puts the * tag on the nonces and

session keys generated by the server and the ticket generated by B. In other words,

anything created fresh and unique is tagged in order to identify all potential tests. The

second run (Figure 4.5) shows the analysis done without placing the * on the keys and

tickets generated by the different parties. The reason for this is to show that in order to

detect the presence of tests, it is important that the analyzers of the protocol know what

they intend to use as unique/fresh terms, thus they have more flexibility when doing

analysis.

 In the first test, numerous examples of unsolicited tests are shown due to the sheer

volume of freshly tagged terms. At this point, it is important to note that the SPA does

not disqualify any components but does make note of the fact that in step 3 a fresh term

(a key) is being transmitted in two components. Although this negates their validity as

outgoing tests, the SPA still makes the correct assessment and determines that unsolicited

tests involving these components do occur.

A -> B : A *Na
B -> S : B {A Na *tb}Kbs *Nb
S -> A : {B Na *Kab tb}Kas {A *Kab tb}Kbs Nb
A -> B : {A *Kab tb}Kbs {Nb}Kab

<Parties> : <Message> >> A -> B : A *Na

46

Sender may be attempting to initiate an incoming test by transmitting Na in the clear.

<Parties> : <Message> >> B -> S : B {A Na *tb}Kbs *Nb
Encrypt term(s) < A Na *tb > with key Kbs is readable by both sender/receiver.
Unsolicited test for S because of nonce Na within test component < {A Na tb}Kbs >
Sender may be attempting to initiate an outgoing test by transmitting tb in encrypted form.
Unsolicited test for S because of nonce tb within test component < {A Na tb}Kbs >
Sender may be attempting to initiate an incoming test by transmitting Nb in the clear.

<Parties> : <Message> >> S -> A : {B Na *Kab tb}Kas {A *Kab tb}Kbs Nb
Encrypt term(s) < B Na *Kab tb > with key Kas is readable by both sender/receiver.
The unencrypted/fresh nonce Na has been received back in new component: {B Na Kab tb}Kas
Incoming test for A because fresh term Na was sent out earlier in < Na >
Unsolicited test for A because of nonce Kab within test component < {B Na Kab tb}Kas >
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.
Unsolicited test for A because of nonce tb within test component < {B Na Kab tb}Kas >
Encrypted term(s) < A *Kab tb > with key Kbs is readable by sender only.
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an
outgoing test.
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted
form.

<Parties> : <Message> >> A -> B : {A *Kab tb}Kbs {Nb}Kab
Encrypted term(s) < A *Kab tb > with key Kbs is readable by recipient only.
Unsolicited test for B because of nonce Kab within test component < {A Kab tb}Kbs >
The encrypted/fresh nonce tb has been received back in new component: {A Kab tb}Kbs
Outgoing/Incoming test for B because fresh term tb was sent out earlier in < {A Na tb}Kbs >
Encrypt term(s) < Nb > with key Kab is readable by both sender/receiver.
The unencrypted/fresh nonce Nb has been received back in new component: {Nb}Kab
Incoming test for B because fresh term Nb was sent out earlier in < Nb >

Figure 4.4 – Neuman-Stubblebine with Tags on Keys/Tickets

 In Figure 4.5, the Neuman-Stubblebine is run on the SPA without attaching the * to

the keys or ticket. The only difference here is that it follows more closely with the results

made by Guttman [5]. However, it is not incorrect to show a key or timestamp, generated

similarly to a nonce, as fresh and denoting it with a fresh identifier as previously shown.

Nor does it negate the conclusion of the previous example.

A -> B : A *Na1
B -> S : B {A *Na1 Tb}Kbs *Nb1
S -> A : {B Na1 Kab Tb}Kas {A Kab Tb}Kbs Nb1
A -> B : {A Kab Tb}Kbs {Nb1}Kab

47

<Parties> : <Message> >> A -> B : A *Na1
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear.

<Parties> : <Message> >> B -> S : B {A *Na1 Tb}Kbs *Nb1
Encrypt term(s) < A *Na1 Tb > with key Kbs is readable by both sender/receiver.
Sender is attempting to intiate a test with an old/invalidated nonce!
Unsolicited test for S because of nonce Na1 within test component < {A Na1 Tb}Kbs >
Sender may be attempting to initiate an incoming test by transmitting Nb1 in the clear.

<Parties> : <Message> >> S -> A : {B Na1 Kab Tb}Kas {A Kab Tb}Kbs Nb1
Encrypt term(s) < B Na1 Kab Tb > with key Kas is readable by both sender/receiver.
The unencrypted/fresh nonce Na1 has been received back in new component: {B Na1 Kab Tb}Kas
Incoming test for A because fresh term Na1 was sent out earlier in < Na1 >
Encrypted term(s) < A Kab Tb > with key Kbs is readable by sender only.

<Parties> : <Message> >> A -> B : {A Kab Tb}Kbs {Nb1}Kab
Encrypted term(s) < A Kab Tb > with key Kbs is readable by recipient only.
Encrypt term(s) < Nb1 > with key Kab is readable by both sender/receiver.
The unencrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kab
Incoming test for B because fresh term Nb1 was sent out earlier in < Nb1 >

Figure 4.5 – Neuman-Stubblebine w/o Tags on Keys/Tickets

4.2.5 Needham-Schroeder with Server

 In this test, the Needham-Schroeder protocol is executed on the SPA again. However,

unlike before, the server portion of the protocol is included (Figure 4.6). This protocol is

drawn directly from [29]. However, for clarification, the keys Kas and Kbs are used to

show when the server is communicating with A and B specifically. Normal operation of

the protocol entails the server using its private key for encryption of these messages and

assumes both parties have the servers’ public key. The use of this key format does not

alter the results of the test.

A -> S : A B
S -> A : {Kb B}KaS
A -> B : {A *Na}Kb
B -> S : B A
S -> B : {Ka A}KbS
B -> A : {Na *Nb}Ka
A -> B : {Nb}Kb

48

<Parties> : <Message> >> A -> S : A B

<Parties> : <Message> >> S -> A : {Kb B}KaS
Encrypt term(s) < Kb B > with key KaS is readable by both sender/receiver.

<Parties> : <Message> >> A -> B : {A *Na}Kb
Encrypted term(s) < A *Na > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.

<Parties> : <Message> >> B -> S : B A

<Parties> : <Message> >> S -> B : {Ka A}KbS
Encrypt term(s) < Ka A > with key KbS is readable by both sender/receiver.

<Parties> : <Message> >> B -> A : {Na *Nb}Ka
Encrypted term(s) < Na *Nb > with key Ka is readable by recipient only.
The encrypted/fresh nonce Na has been received back in new component: {Na Nb}Ka
Outgoing test for A because fresh term Na was sent out earlier in < {A Na}Kb >
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.

<Parties> : <Message> >> A -> B : {Nb}Kb
Encrypted term(s) < Nb > with key Kb is readable by recipient only.
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kb
Outgoing test for B because fresh term Nb was sent out earlier in < {Na Nb}Ka > >

Figure 4.6 – Needham-Schroeder Protocol (w/ Server)

 This test results in output similar to earlier tests with Needham-Schroeder. The only

real difference is the interaction with the server that occurs between each party.

4.2.6 Kerberos Protocol

 The Kerberos protocol results are very similar to Neuman-Stubblebine. In Chapter 2,

an in-depth description of how this protocol works is given. The layout used here, which

contains more specific information in each message, is taken directly from [29].

Regarding the analysis, there are no surprises in the output. The only subjective action

was not to tag all keys and timestamps as fresh, even though they are. The reason is that,

based on the Neuman-Stubblebine output, nothing further would be gained from this

except a more lengthy output.

49

C -> A : U G L1 *N1
A -> C : U {U C G *Kcg Tst Tex}Kag {G *Kcg Tst Tex N1}Ku
C -> G : S L2 *N2 {U C G *Kcg Tst Tex}Kag {C *T1}Kcg
G -> C : U {U C S *Kcs Tst1 Tex1}Kcg {S *Kcs Tst1 Tex1 N2}Kcg
C -> S : {U C S Kcs Tst1 Tex1}Kcg {C *T2}Kcs
S -> C : {T2}Kcs

<Parties> : <Message> >> C -> A : U G L1 *N1
Sender may be attempting to initiate an incoming test by transmitting N1 in the clear.

<Parties> : <Message> >> A -> C : U {U C G *Kcg Tst Tex}Kag {G *Kcg Tst Tex N1}Ku
Encrypted term(s) < U C G *Kcg Tst Tex > with key Kag is readable by sender only.
Sender may be attempting to initiate an outgoing test by transmitting Kcg in encrypted form.
Encrypted term(s) < G *Kcg Tst Tex N1 > with key Ku is readable by neither sender nor receiver.
Warning: Sender is transmitting nonce Kcg in two separate components, invalidating its use as an
outgoing test.
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kcg in encrypted
form.

<Parties> : <Message> >> C -> G : S L2 *N2 {U C G *Kcg Tst Tex}Kag {C *T1}Kcg
Sender may be attempting to initiate an incoming test by transmitting N2 in the clear.
Encrypted term(s) < U C G *Kcg Tst Tex > with key Kag is readable by recipient only.
Unsolicited test for G because of nonce Kcg within test component < {U C G Kcg Tst Tex}Kag >
Encrypt term(s) < C *T1 > with key Kcg is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting T1 in encrypted form.
Unsolicited test for G because of nonce T1 within test component < {C T1}Kcg >

<Parties> : <Message> >> G -> C : U {U C S *Kcs Tst1 Tex1}Kcg {S *Kcs Tst1 Tex1 N2}Kcg
Encrypt term(s) < U C S *Kcs Tst1 Tex1 > with key Kcg is readable by both sender/receiver.
Pseudo-unsolicited test for C because Kcs is a newly received fresh nonce, but C has sent items to G
previously.
Sender may be attempting to initiate an outgoing test by transmitting Kcs in encrypted form.
Encrypt term(s) < S *Kcs Tst1 Tex1 N2 > with key Kcg is readable by both sender/receiver.
Warning: C is seeing Kcs again...but it's tagged with * (fresh) identifier!
Warning: Sender is transmitting nonce Kcs in two separate components, invalidating its use as an
outgoing test.
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kcs in encrypted
form.
The unencrypted/fresh nonce N2 has been received back in new component: {S Kcs Tst1 Tex1
N2}Kcg
Incoming test for C because fresh term N2 was sent out earlier in < N2 >

<Parties> : <Message> >> C -> S : {U C S Kcs Tst1 Tex1}Kcg {C *T2}Kcs
Encrypted term(s) < U C S Kcs Tst1 Tex1 > with key Kcg is readable by sender only.
Encrypt term(s) < C *T2 > with key Kcs is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting T2 in encrypted form.
Unsolicited test for S because of nonce T2 within test component < {C T2}Kcs >

<Parties> : <Message> >> S -> C : {T2}Kcs
Encrypt term(s) < T2 > with key Kcs is readable by both sender/receiver.
The encrypted/fresh nonce T2 has been received back in new component: {T2}Kcs
Outgoing/Incoming test for C because fresh term T2 was sent out earlier in < {C T2}Kcs >

50

Figure 4.7 – Kerberos Protocol

 4.2.7 Analyzing Otway-Rees

 In this section, the Otway-Rees protocol is analyzed using the SPA. Figure 4.8 shows

the output generated from the SPA.

A -> B : *M A B {*Na1 *M A B}Kas
B -> S : M A B {Na1 M A B}Kas {*Nb1 M A B}Kbs
S -> B : M {Na1 *Kab}Kas {Nb1 *Kab}Kbs
B -> A : M {Na1 Kab}Kas

<Parties> : <Message> >> A -> B : *M A B {*Na1 *M A B}Kas
Sender may be attempting to initiate an incoming test by transmitting M in the clear.
Encrypted term(s) < *Na1 *M A B > with key Kas is readable by sender only.
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.
Sender may be attempting to initiate an outgoing test by transmitting M in encrypted form.
Sender is sending the same nonce M out both encrypted and plain.
It may only be used to complete an incoming test.

<Parties> : <Message> >> B -> S : M A B {Na1 M A B}Kas {*Nb1 M A B}Kbs
Encrypted term(s) < Na1 M A B > with key Kas is readable by recipient only.
Unsolicited test for S because of nonce Na1 within test component < {Na1 M A B}Kas >
Unsolicited test for S because of nonce M within test component < {Na1 M A B}Kas >
Encrypt term(s) < *Nb1 M A B > with key Kbs is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Nb1 in encrypted form.
Unsolicited test for S because of nonce Nb1 within test component < {Nb1 M A B}Kbs >

<Parties> : <Message> >> S -> B : M {Na1 *Kab}Kas {Nb1 *Kab}Kbs
Encrypted term(s) < Na1 *Kab > with key Kas is readable by sender only.
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.
Encrypt term(s) < Nb1 *Kab > with key Kbs is readable by both sender/receiver.
The encrypted/fresh nonce Nb1 has been received back in new component: {Nb1 Kab}Kbs
Outgoing/Incoming test for B because fresh term Nb1 was sent out earlier in < {Nb1 M A B}Kbs >
Pseudo-unsolicited test for B because Kab is a newly received fresh nonce, but B has sent items to S
previously.
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an
outgoing test.
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted
form.

<Parties> : <Message> >> B -> A : M {Na1 Kab}Kas
Encrypted term(s) < Na1 Kab > with key Kas is readable by recipient only.
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 Kab}Kas
Outgoing/Incoming test for A because fresh term Na1 was sent out earlier in < {Na1 M A B}Kas >
Unsolicited test for A because of nonce Kab within test component < {Na1 Kab}Kas >

51

Figure 4.8 – Output of Otway-Rees protocol run

 In the Otway-Rees run there is nothing new being seen by the analyzer that has not

already been demonstrated. The only important thing to get from this is that the SPA is

capable of accurately finding authentication tests and examples of basic

mischievous/erroneous activity.

4.3 Non-Regular Protocol Test Cases

 This section examines several test cases meant to test the reliability of the SPA against

cases that, although not representative of any real protocol, may undoubtedly surface in a

similar form. These test cases are essentially designed to test the analyzers ability to

recognize common mischievous activities as defined in the Dolev-Yao threat model.

4.3.1 Repeating Message

 This section examines how the SPA can verify a case in which a principal retransmits

an identical message back to the sender. In Figure 4.9, principal A transmits a test

component containing a fresh nonce. From a receiver’s point of view, this constitutes an

unsolicited test. However, the intended recipient simply retransmits the message back to

the sender. Because the component received back is not altered, A cannot deduce that an

intended party performed any action on the component; therefore, this does not constitute

an outgoing test.

A -> B : {*Na}Kab
B -> A : {Na}Kab

<Parties> : <Message> >> A -> B : {*Na}Kab
Encrypt term(s) < *Na > with key Kab is readable by both sender/receiver.
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.

52

Unsolicited test for B because of nonce Na within test component < {Na}Kab >

<Parties> : <Message> >> B -> A : {Na}Kab
Encrypt term(s) < Na > with key Kab is readable by both sender/receiver.
The encrypted nonce Na has been received back, but in a duplicated transmission!
The component {Na}Kab was sent out identically by this sender.

Figure 4.9 - Repeating Message

4.3.2 Sub Term Relationship of Encrypted Test Component

 This section covers a test that demonstrates the analyzers ability to verify usage of test

components as a whole in an improper manner. Recall from Chapter 2 that the definition

of a test component stipulates that a test component cannot exist as a proper subterm of

any other term on any other regular node. In this example, B attempts to use A’s

encrypted message as his own ‘fresh’ term when communicating with C. The analyzer,

which looks ahead, realizes this and flags the original component as invalid! Because of

this, A is no longer able to complete is outgoing test. Since we are using asymmetric

cryptography, no unsolicited tests occur either. The only test that might have occurred in

this run would be an outgoing if C gets his fresh nonce back at a later time.

 A -> B : {*Na}Kb
B -> C : {{Na}Kb}Kc
C -> B : {{Na}Kb *Nc}Kb
B -> A : {Na Nc}Ka

<Parties> : <Message> >> A -> B : {*Na}Kb
Encrypted term(s) < *Na > with key Kb is readable by recipient only.
{Na}Kb is an invalid test component because it's either a proper
subterm of another component or is a duplicate transmission!
Receiver is receiving an invalid test component {Na}Kb otherwise, it would be an unsolicited test
with fresh term Na

<Parties> : <Message> >> B -> C : {{Na}Kb}Kc
Encrypted term(s) < {Na}Kb > with key Kc is readable by recipient only.
Encrypted term(s) < Na > with key Kb is readable by sender only.

<Parties> : <Message> >> C -> B : {{Na}Kb *Nc}Kb
Encrypted term(s) < {Na}Kb *Nc > with key Kb is readable by recipient only.

53

Encrypted term(s) < Na > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Nc in encrypted form.

<Parties> : <Message> >> B -> A : {Na Nc}Ka
Encrypted term(s) < Na Nc > with key Ka is readable by recipient only.

Figure 4.10 - Sub-Term Re-Encryption

4.3.3 Unreadable Encryption on Messages

 The final improper protocol test involves testing the SPA’s ability to check for proper

encryption. In Figure 4.11, the SPA is running the Needham-Schroeder protocol but on

line two of the input file, the encryption ensures A cannot read the message. Therefore,

the SPA should not show any example of an outgoing test. Correctly so, the SPA does

not. In fact, notice the SPA’s ability to demonstrate duplicate transmission of messages.

A -> B : {*Na}Kb
B -> A : {Na *Nb}Kb
A -> B : {Na Nb}Kb

<Parties> : <Message> >> A -> B : {*Na}Kb
Encrypted term(s) < *Na > with key Kb is readable by recipient only.
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.

<Parties> : <Message> >> B -> A : {Na *Nb}Kb
Encrypted term(s) < Na *Nb > with key Kb is readable by sender only.
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.

<Parties> : <Message> >> A -> B : {Na Nb}Kb
Encrypted term(s) < Na Nb > with key Kb is readable by recipient only.
The encrypted nonce Nb has been received back, but in a duplicated transmission!
The component {Na Nb}Kb was sent out identically by this sender.

Figure 4.11 – Needham-Schroeder with improper encryption

4.4 Summary

 This chapter described the results of running several normal protocols and several

incorrect protocols on the SPA. The output of each test is described in detail in order for

the reader to have a greater appreciation of what the tool is doing. It is evident that the

54

tool provides a reliable means of determining if and where any authentication tests occur

in the occurrence of a particular protocol. The SPA also demonstrates its ability to

ascertain improper behavior, as demonstrated in the ‘improper’ protocols. Although the

SPA is not designed to show weaknesses in a protocol, the absence of authentication tests

should raise flags regarding a protocol and thus increase skepticism regarding its security.

The next chapter gives final analysis of the results of running the SPA on communication

protocols.

55

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter provides conclusions as to the success of the research and provides a

roadmap for future work in the field of protocol analysis. It provides insight into what

the Secure Protocol Analyzer accomplishes and how another modeling language may or

may not provide better analysis of protocols in the future.

5.1 Conclusions of Research

The SPA successfully shows that protocol analysis with a tool developed in Java

is highly valuable in the performance of protocol analysis. In particular, the SPA is able

to determine when and where outgoing, incoming and unsolicited tests occur within a

protocol run. Using string comparisons vice type comparisons requires specific values be

given and does limit the application to analysis based on completed static runs. However,

putting together numerous protocols in generic text files proves much easier than

individual protocol development as noted in other protocol analyzers [27, 11]. It also

allows for much quicker analysis of the protocol because it does not have to dynamically

create a search tree, instead it only examines the post-run state of the protocol as entered

in the input text file. In conclusion, the SPA allows the taking of any protocol as input in

a standard text file and generates accurate output that shows occurrences of

authentication tests, and it does so very quickly.

56

5.3 Significance of Research

This research is significant because it creates a simple-to-use tool that effectively

shows the presence of authentication tests. Although there are numerous other methods

for analyzing protocols, this method proves easy to use, accurate in its results and, more

importantly, it enables any protocol to be entered in with minimal effort by the user.

Another important result of this work is that output from the SPA can be tailored to one’s

unique work. This opens the possibility that output from the SPA could be used as input

for other theorem checking tools or protocol analysis tools that may look for different

aspects regarding a particular protocol. Finally, this fast automation of analysis is

important because the longer a protocol is left in use without in-depth analysis being

performed on it, the more the chance of mischievous persons finding a potential

weakness during its use and exploiting it.

5.4 Recommendations for Future Research

 Although the tool is fairly complete in its present form, added functionality will

certainly improve the effectiveness of the tool. For example, adding functionality that

would include provisions for penetrator capabilities. This would entail adding in a means

to examine static runs and evaluate what information a penetrator is able to derive based

on the Dolev-Yao threat model. From this information, the tool might be able to start

developing its own messages in an effort to show the user that it is possible to implant

false messages leading to potential havoc on the principals. Another function worth

adding is that of showing all the keys used during the protocol exchange. From this, the

analyzer can show the keys actually used for encryption, whether they are safe or not,

57

then show the set assumed to be safe as defined by Guttman. Also, as stated in [5], since

the authentication tests work even if n and n' are on different strands, add to the analyzer

the ability to find the tests within different strands.

 Another course of action is development in another modeling language altogether.

Using an analyzer developed through a model checker would allow dynamic creation of

search trees where numerous different states can be analyzed showing not only where and

when authentication tests occur but also how to better develop the protocol to ensure the

authentication tests do occur and that certain states are never reached.

 The other main recommendation for future research is to produce a similar analyzer

using the Maude language specifically. As stated earlier, dynamic evaluation of

protocols allows users to see first-hand the actual operation of a protocol run, versus the

after effect of the run as entered in static format. As explained in Chapter 2, Maude’s

rewriting ability would enable it to generate dynamic states very easily. With this

dynamic evaluation, using a Dolev-Yao threat model, also built into the modeling

language, the user can ascertain all the possible states that a protocol can be in and all the

possible information that can be derived. This includes states that the protocol should not

necessarily be in. Limitations would have to be placed on this method to ensure that state

space explosion and other problems do not occur as described in greater detail in Chapter

2.

 Although there are numerous other protocol analyzers [11, 12, 24], none seem to

exhibit the all-knowing power to ascertain whether protocols are susceptible to attack.

However, built upon the foundation of a solid, powerful and easy to use tool the research

58

and tool generated here gives analysts a clear roadmap into the future of protocol

analysis.

59

Appendix A – Security Protocol Analyzer Code

/*
 * Parser.java
 *
 * Created on December 8, 2003
 */

package protocolB.Parser;

import java.io.*;
import java.text.*;
import protocolB.*;

/**
 * This class parses text from a Reader into a Protocol.
 * @author rgraham
 */
public class Parser
{
 /** Creates a new instance of Parser */
 public Parser(Reader in) {
 this.in = in;
 }

 /** The lexical analyzer, which returns the next token from the
Reader. */
 private Token nextToken() throws ParseException {
 StringBuffer sb = new StringBuffer();
 int type;
 int ch; // It is so annoying that read returns int!

 if (nextToken != null)
 return nextToken;

 // Get the next input character
 ch = getChar();

 // Skip white space
 while (ch == ' ' || ch == '\t' || ch == '\r')
 ch = getChar();

 // Read until one complete token is found
 if (ch == -1)
 type = Token.EOF;
 else if (ch == '\n')
 type = Token.EOL;
 else if (ch == '{')
 type = Token.LBRACE;
 else if (ch == '}')
 type = Token.RBRACE;
 else if (ch == ':')
 type = Token.COLON;
 else if (ch == '*')
 type = Token.STAR;

60

 else if (ch == '-') {
 getChar(); // Skip '>' without checking it
 type = Token.ARROW;
 }
 else if (Character.isLetterOrDigit((char) ch)) {
 do {
 sb.append((char) ch);
 ch = getChar();
 } while (Character.isLetterOrDigit((char) ch));
 prev = ch;
 type = Token.IDENTIFIER;
 }
 else
 throw new ParseException("Unrecognized character '" + ch +
"'", offset);

 nextToken = new Token(type, sb.toString());
 return nextToken;
 }

 /** Reads the next logical character from the input, which may be
the
 * readahead character.
 */
 private int getChar() {
 int ch = -1;

 if (prev != 0) {
 ch = prev;
 prev = 0;
 }
 else {
 try {
 ch = in.read();
 } catch (Exception e) {
 System.err.println(e);
 System.err.println("Aborting.");
 System.exit(1);
 }
 offset++;
 }

 return ch;
 }

 public Protocol parse() throws ParseException {
 Protocol p = new Protocol();
 Message m;

 while (nextToken().getType() != Token.EOF) {
 try {
 m = parseMessage();
 p.addMessage(m);
 } catch (ParseException e) {

61

 System.err.println(e + " at offset " +
e.getErrorOffset());
 // Skip tokens until EOL or EOF
 while (nextToken().getType() != Token.EOL
 && nextToken().getType() != Token.EOF)
 nextToken = null;
 }
 }
 Match(Token.EOF);

 return p;
 }

 /** Matches a specified token type against the next input token and
throws an
 * exception if it doesn't match.
 */
 protected Token Match(int t) throws ParseException {
 Token next = nextToken();

 if (next.getType() != t)
 throw new ParseException("Match Bad token " +
Token.names[next.getType()]
 + ", expected " + Token.names[t],
offset);
 nextToken = null; // Consume the token
 return next;
 }

 protected Encryption parseEncryption() throws ParseException {
 Term m;
 Text key;

 Match(Token.LBRACE);
 m = parseTerm();
 Match(Token.RBRACE);
 key = parseText();

 return new Encryption(m, key);
 }

 protected Text parseText() throws ParseException {
 boolean fresh = false;
 Token next = nextToken();

 if (next.getType() == Token.STAR) {
 fresh = true;
 Match(Token.STAR);
 }
 Token id = Match(Token.IDENTIFIER);
 return new Text(id.getText(), fresh);
 }

 protected Message parseMessage() throws ParseException {
 Text from, to;

62

 Term m;

 from = parseText();
 Match(Token.ARROW);
 to = parseText();
 Match(Token.COLON);
 m = parseTerm();
 Match(Token.EOL);
 return new Message(from.getText(), to.getText(), m);
 }

 /** Parses a sequence of one or more Terms. If more than one, it
returns
 * a Sequence containing the Terms found.
 */
 public Term parseTerm() throws ParseException {
 Term term = null, nextTerm;
 Token next = nextToken();

 while (next.getType() != Token.RBRACE && next.getType() !=
Token.EOL
 && next.getType() != Token.EOF) {
 if (next.getType() == Token.LBRACE)
 nextTerm = parseEncryption();
 else if (next.getType() == Token.IDENTIFIER
 || next.getType() == Token.STAR)
 nextTerm = parseText();
 else
 throw new ParseException("Unexpected token "
 + Token.names[next.getType()]
 + ", expected LBRACE,
IDENTIFIER or STAR",
 offset);

 if (term == null)
 term = nextTerm;
 else if (term instanceof Sequence)
 ((Sequence) term).addTerm(nextTerm);
 else {
 Sequence temp = new Sequence();
 temp.addTerm(term);
 temp.addTerm(nextTerm);
 term = temp;
 }
 next = nextToken();
 }

 if (term == null)
 throw new ParseException("Term expected", offset);

 return term;
 }

 protected Reader in;
 private int prev = 0; // Lookahead character

63

 private Token nextToken = null; // Lookahead token
 private int offset = 0;
}

/*
 * Token.java
 *
 * Created on December 8, 2003
 */

package protocolB.Parser;

/**
 * This class represents a single Token parsed from an input stream.
 *
 * @author rgraham
 */
public class Token {

 /** Creates a new instance of Token */
 public Token(int type, String text) {
 this.type = type;
 this.text = text;
 }

 public int getType() {
 return type;
 }

 public String getText() {
 return text;
 }

 public static final int EOF = 0;
 public static final int LBRACE = 1;
 public static final int RBRACE = 2;
 public static final int IDENTIFIER = 3;
 public static final int ARROW = 4;
 public static final int COLON = 5;
 public static final int EOL = 6;
 public static final int STAR = 7;

 public static String names[] = { "EOF", "LBRACE", "RBRACE",
"IDENTIFIER",
 "ARROW", "COLON", "EOL", "STAR" };

 protected int type;
 protected String text;
}

package protocolB;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 24 Feb 2004

64

This is just the abstract class that encryption, sequence and term are
extending
*/
import java.util.*;
public abstract class Term
{
 public Term()
 { }
 public abstract void getReadableTexts(String lfrom, String lto,
Vector p,
 boolean readable, boolean sent_plain, String comp,
 Vector list_of_components, Vector old_sent, Vector bad_test_comp,
Vector temp_holdings, Vector text_obj, String type_enc);
 //IF there is a better way to do this I just don't kow how right
now...but at
 //least I haven't reached 13 arguments, 12 means perfection -> 13
means insanity!!!
 public abstract void getComp(Vector bad_test_comp,Vector
temp_holdings, String lfrom, String lto, boolean outside);//Go through
tree and get {h}k
 public abstract void getTextObj(Vector text_obj);

}

package protocolB;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 24 Feb 2004
RGraham says:
 * A Text is a primitive (atomic) Term. Common texts are principal
names, keys
 * and nonces. A fresh text is one that is generated dynamically in
such a way
 * as to be unique among all other texts in use (at least to high
probability,
 * as by a pseudo-random process with a sufficient text length).
 *
What more can I say? However, these is where principal.addnonce is
called for each individual instance of a term.
It then goes into that particular parties instance and checks their
vectors to see if it is completing a test
*/
import java.util.*;
public class Text extends Term
{
 /** Creates a new instance of Text */
 public Text(String text, boolean fresh) {
 this.text = text;
 this.fresh = fresh;
 if (fresh) this.wasfresh = true; //if it is fresh it will have
once been fresh
 //this wasfresh should never change because it only says the
term was fresh at one time
 }

65

 public String getText() {
 return text;
 }

 public boolean isFresh() {
 return fresh;
 }

 public void getReadableTexts(String lfrom, String lto, Vector p,
boolean readable, boolean sent_plain, String comp,
 Vector list_of_components, Vector
old_sent, Vector bad_test_comp, Vector temp_holdings, Vector text_obj,
String type_enc)
 {
 int y = 0;

 if (this.isFresh())
 {
 while (y < p.size())
 {
 Principal P = (Principal) p.elementAt(y);
 if (P.lname.equalsIgnoreCase(lfrom))
 P.addnonce(text, "sender", lfrom, lto, readable,
sent_plain, true, comp, list_of_components, old_sent, bad_test_comp,
temp_holdings, text_obj, type_enc);

 if (P.lname.equalsIgnoreCase(lto))
 P.addnonce(text, "receiver", lfrom, lto, readable,
sent_plain, true, comp, list_of_components, old_sent,
bad_test_comp,temp_holdings, text_obj, type_enc);
 y++;
 }
 }//End of if it's fresh
 else//Even if it's not fresh, if it was fresh the text_obj vector
has each text object in it, that way I can get more about this
particular text
 {
 int U = 0;
 String temp = "";
 while (U < p.size())
 {
 Principal P = (Principal) p.elementAt(U);

 if (P.lname.equalsIgnoreCase(lto))//lto (below) used to be
temp, not sure why?should have used comments earlier!
 P.addnonce(text, "receiver", lfrom, lto, readable,
sent_plain, false, comp, list_of_components, old_sent, bad_test_comp,
temp_holdings, text_obj, type_enc);

 U++;
 }
 }//End of else it's not
 }

66

 public String toString() {
 return (fresh ? "*" : "") + text;
 }

 public void getComp(Vector bad_test_comp, Vector temp_holdings,
String lfrom, String lto, boolean outside)//, Vector text_obj)
 { }//End of get comp

 public void getTextObj(Vector text_obj)
 {
 //I just want my text object which is the {}K stuff, in principal
I'll check if my
 //individual term is in the bad 't'
 boolean toadd = false;//once I loop through vector if text is not
in there this changes to true
 int t = 0; //Then it gets added to the list, ensures
duplicates aren't added

 while (t < text_obj.size())
 {
 Text temptext = (Text) text_obj.elementAt(t);
 if (temptext.getText().equalsIgnoreCase(this.getText()))
 { toadd = true; }
 t++;
 }//end of while
 if (!toadd)
 { text_obj.addElement(this); }
 toadd = false;//change it back regardless...even though when I
come back it gets reset anyways!!!
 }//End of getTextObj

 protected String text;
 protected boolean fresh;
 protected boolean is_nonce;
 protected boolean wasfresh;
}

package protocolB;
import java.util.*;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 24 Feb 2004

 * A Sequence is a concatenation of Terms. Concatenation is assumed to
be
 * associative.
 * This class calls getreadabletext based on type of comp it is
working with...
 * @author rgraham
 */
public class Sequence extends Term
{
 /** Creates a new instance of Sequence */
 public Sequence() {

67

 terms = new ArrayList();
 }

 public void addTerm(Term t) {
 terms.add(t);
 }

 public ListIterator getTerms() {
 return terms.listIterator();
 }

 public void getComp(Vector bad_test_comp,Vector temp_holdings,
String lfrom, String lto, boolean outside)
 {
 System.out.println("Enter getComp in sequ");
 for (ListIterator i = terms.listIterator(); i.hasNext();)
 {
 Term u = (Term) i.next();
 System.out.println(u.toString());
 if (u instanceof Sequence)
 {//Once I am inside encryption, it has its own way of handling
sequences...slightly different from sequence method
 u.getComp(bad_test_comp, temp_holdings,lfrom, lto, outside);
 }
 else if (u instanceof Encryption)//This won't be internal
encryption, that is handled inside encrpytion
 {//This is the case where the message comes in for example: A
{a}K<-then it will call encryption to check inside this
 temp_holdings.addElement(u.toString());//should add outside
encryption to temp_holdings

 //////////
 int max = u.toString().length();
 int Y = 0;
 String hold = "";
 while (Y < max)
 {
 if (!u.toString().substring(Y,
Y+1).equalsIgnoreCase("*"))
 hold = hold + u.toString().substring(Y, Y+1);
 Y++;
 }
 temp_holdings.addElement(hold);

 String hold1 = hold + lfrom;
 String hold2 = hold + lto;
 if (!temp_holdings.contains(hold1))
 if (!temp_holdings.contains(hold2))
 temp_holdings.addElement(hold1);
 //////////

 u.getComp(bad_test_comp,temp_holdings, lfrom, lto,
outside);//Now let's go inside the encryption and check for term types
 }

68

 else //What else could it be?//it must be text don't really
care, it does nothing anyways
 u.getComp(bad_test_comp,temp_holdings, lfrom, lto,
outside);
 }
 }//End of get comp function

 public void getTextObj(Vector text_obj)
 {
 for (ListIterator i = terms.listIterator(); i.hasNext();)
 {
 Term u = (Term) i.next();
 u.getTextObj(text_obj);//Call whatever instance of term the
i.next is
 }
 }

 public void getReadableTexts(String lfrom, String lto, Vector p,
boolean readable,
 boolean sent_plain, String comp,
Vector list_of_components,
 Vector old_sent, Vector bad_test_comp,
Vector temp_holdings, Vector text_obj, String type_enc)
 {
 for (ListIterator i = terms.listIterator(); i.hasNext();)
 {

 Term u = (Term) i.next();

 if (u instanceof Sequence)//Could be more sequence of stuff
 { u.getReadableTexts(lfrom, lto, p, readable, sent_plain,
comp, list_of_components, old_sent, bad_test_comp, temp_holdings,
text_obj, type_enc); }

 else if (u instanceof Encryption)
 {
 String temporary = u.toString();
 u.getReadableTexts(lfrom, lto, p, readable, sent_plain,
temporary, list_of_components, old_sent, bad_test_comp, temp_holdings,
text_obj, type_enc);
 list_of_components.addElement(temporary);
 } //Work with component then add it to "I've seen it
already" vector

 else //It's either encryption or text object...
 {//don't add text to component list....
 u.getReadableTexts(lfrom, lto, p, readable, sent_plain, comp,
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj,
type_enc);
 }//End of else it isn't sequence

 }//End of for loop
 }//End of GetReadable Texts() function

 public String toString() {

69

 StringBuffer sb = new StringBuffer();

 for (ListIterator i = terms.listIterator(); i.hasNext();) {
 sb.append(((Term) i.next()).toString());
 if (i.hasNext())
 sb.append(" ");
 }

 return sb.toString();
 }

 protected List terms;
}

package protocolB;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 23 Feb 2004

This is where the main() function is. This is the driver of the
program! Here is where the following occurs:
individual instances of principal are created from the 'from' and 'to'
of the message, they are placed in a vector
and passed around. Also, each message is broken into components and
analyzed if it's a duplicate or subterm (subterm
verification also is checked in encryption class). Depending on check,
the comp is placed in wither test_comp vector
or bad_comp vector. After this steps are done, it then starts the
process by analyzing 1 message at a time, depending
on what the instance is, it call getreadabletext. Since a message may
contain sub-parts, getreadabletext is also called
recursively in other classes such as encryption and text.
*/
//import Parser.*;
import protocolB.Parser.*;
import java.io.*;
import java.util.*;
import java.text.ParseException;

public class ProtocolAnalyzer {

 public static void main(String[] args) {
 boolean err = false;
 Protocol protocol = null;
 Reader reader = null;

 Vector num_parties = new Vector();
 Vector parties = new Vector();
 Vector list_of_components = new Vector(); //Lists all
componentsfu
 Vector old_sent = new Vector();

 Vector bad_test_comp = new Vector(); //this one only worries
about

70

 //whether some t = {h}k is not a proper subcomponent of any
regular node

 Vector temp_holdings = new Vector();//This started out as a
temp item but now has evolved into a real vector to be used
 //it contains the encrypted terms that can act as legitimate
test components...

 Vector text_obj = new Vector(); //Make an instance of each text
and pass it around

 //The wonderful world of non-GUI main screens
 System.out.println();
 System.out.println(">>>>>>>>>>>>>> Protocol-Analyzer Version
1.2 <<<<<<<<<<<<<");

 if (args.length == 0) {
 System.out.println("Nothing to parse.");
 System.exit(1);
 }

 System.out.println("Parsing from file '" + args[0] + "'");
 try {
 reader = new FileReader(args[0]);
 } catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }

 Parser p = new Parser(reader);
 try {
 protocol = p.parse();
 } catch (ParseException e) {
 System.out.println(e + " at offset " + e.getErrorOffset());
 err = true;
 } catch (Exception e) {
 System.out.println(e);
 err = true;
 }
 if (!err)
 System.out.println("File Contents:\n" + protocol);

 for (ListIterator i = protocol.listIterator(); i.hasNext();)
 {
 Message t = (Message) i.next();
 //Lets count the number of unique parties in the given
protocol
 if (!num_parties.contains(t.from))
num_parties.addElement(t.from);
 if (!num_parties.contains(t.to))
num_parties.addElement(t.to);
 }//End of for loop which creates principal instances...

 //Start creating instances of party for each player in the
protocol

71

 String temp = "";
 int j = 0;
 while (j<num_parties.size())
 {
 temp = num_parties.elementAt(j).toString();
 Principal PPP = new Principal(temp);
 parties.addElement(PPP);
 temp = "";
 j++;
 }

///////////This section will run through the whole protocol and get all
components for
///////////later testing on subterm relationships...
///////////Will also do the text_obj stuff in here
 for (ListIterator i = protocol.listIterator(); i.hasNext();)
 {
 Message t = (Message) i.next();
 Term g = (Term) t.getTerm();

 if (g instanceof Sequence)
 {
 Sequence S = (Sequence) g;

 for (ListIterator k = S.getTerms(); k.hasNext();)
 {
 Term l = (Term) k.next();
 l.getComp(bad_test_comp, temp_holdings, t.from, t.to,
true);
 l.getTextObj(text_obj);
 }//End of for loop within sequence
 }//End of if statement
 else if (g instanceof Encryption)
 {
 temp_holdings.addElement(g);
 //This part makes copy and puts it in without * so I can
check for duplicate later
 int max = g.toString().length();
 int Y = 0;
 String hold = "";
 while (Y < max)
 {
 if (!g.toString().substring(Y,
Y+1).equalsIgnoreCase("*"))
 hold = hold + g.toString().substring(Y, Y+1);
 Y++;
 }
 temp_holdings.addElement(hold);

 String hold1 = hold + t.from;
 String hold2 = hold + t.to;
 if (!temp_holdings.contains(hold1))
 if (!temp_holdings.contains(hold2))
 temp_holdings.addElement(hold1);

72

 g.getComp(bad_test_comp, temp_holdings, t.from, t.to,
true);
 g.getTextObj(text_obj);
 }
 else if (g instanceof Text)
 {
 g.getComp(bad_test_comp, temp_holdings, t.from, t.to,
true);
 g.getTextObj(text_obj);
 }
 }//End of for loop through evaluation of entire protocol for
potential test components

 //What this part does is take the terms in my array of suspect
comp's and remove *, so that
 //someone doesn't retransmit exact same message back
 //for example: {*N}Kmn then resend as {N}Kmn is not valid
outoging test!
 /* int h = 0;
 int max = bad_test_comp.size();
 String holder = "";
 String temporary2 = "";
 while (h < max)
 {
 holder = bad_test_comp.elementAt(h).toString();
 int y = 0;
 while (y <holder.length())
 {
 if (!holder.substring(y,y+1).equalsIgnoreCase("*"))
 temporary2 = temporary2 + holder.substring(y,y+1);
 y++;
 }//End of innner while

 bad_test_comp.addElement(temporary2);
 temporary2 = "";
 h++;
 }//End of outer while*/

 //Take out the * in the temp holding vector
 /* int h = 0;
 int max = temp_holdings.size();
 String holder = "";
 String temporary2 = "";
 while (h < max)
 {
 holder = temp_holdings.elementAt(h).toString();
 int y = 0;
 while (y <holder.length())
 {
 if (!holder.substring(y,y+1).equalsIgnoreCase("*"))
 temporary2 = temporary2 + holder.substring(y,y+1);
 y++;
 }//End of innner while

 temp_holdings.addElement(temporary2);

73

 temporary2 = "";
 h++;
 }//End of outer while*/

///MORE DEBUG CODE JUST DUMPS VECTORS OF COMP DEBUG CODE///
 /* int K = 0;
 while (K < bad_test_comp.size())
 {//This is for testing purposes
 System.out.println("Bad test comp: " +
bad_test_comp.elementAt(K).toString());
 K++;
 }

 K = 0;
 while (K < temp_holdings.size())
 {//This is for testing purposes
 System.out.println("Temp holdings: " +
temp_holdings.elementAt(K).toString());
 K++;
 }*/

//DEBUG CODE DEBUG CODE //Test the text_obj vector //DEBUG CODE
 /* int w = 0;
 while (w < text_obj.size())
 {
 Text temptext = (Text) text_obj.elementAt(w);
 System.out.println("The PA output in vector is: " +
temptext.toString());
 w++;
 }//end of while*/
////////////End of my latest monster code which follows well that of
the pasta class! Still,
////////////it is quite ingenious....or I must be losing it, or I am a
genious...only voice number 3
////////////in my head knows the truth :-)

 for (ListIterator i = protocol.listIterator(); i.hasNext();)
 {
 Message t = (Message) i.next();
 System.out.println();
 System.out.println("<Parties> : <Message> >> " +
t.toString());
 Term g = (Term) t.getTerm();
 String type_enc = "ASYM";

 if (g instanceof Sequence)
 {
 Sequence S = (Sequence) g;

 for (ListIterator k = S.getTerms(); k.hasNext();)
 {
 Term l = (Term) k.next();
 l.getReadableTexts(t.from, t.to, parties, false, true,
l.toString(), list_of_components, old_sent, bad_test_comp,
temp_holdings, text_obj, type_enc);

74

 }
 }
 else if (g instanceof Encryption)
 {
 g.getReadableTexts(t.from, t.to, parties, false, true,
g.toString(), list_of_components, old_sent, bad_test_comp,
temp_holdings, text_obj, type_enc);
 list_of_components.addElement(g.toString());//Work with
component then add it to "I've seen it already" vector
 }
 else
 {
 g.getReadableTexts(t.from, t.to, parties, false, true,
g.toString(), list_of_components, old_sent, bad_test_comp,
temp_holdings, text_obj, type_enc);
 }//Don't add plain text to comp vector
 }

 }//End of main
}//End of class
package protocolB;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 23 Feb 2004

This is a key class. Here is where an addnonce, that is called from
text class, ends up. This has
numerous flags and variables passed in. This class does the test for
tests. Whenever the string value
is set to sender, values sent in apply to that particular instance of
sender, created in protocolanalyzer class.
Likewise for receiver. Not much else to say on this class except that
tests work basically like this: Whenever I
am in sender mode, whatever nonce is passed in is placed in a vector
(sent_nonces if encr/sent_unencrypted is sent unencr)
As long as the comp isn't disqualified, that is. These flags are
checked mostly in all the if's of the receiver.
Then whenever I am receiver, I check through my sent_nonce and
sent_unencerypted vectors and see if the nonce passed
in is there, if so it completes whatever test is applicable.

*/
import java.util.*;
public class Principal
{
 String lname = "";
 String the_fresh_nonce = "";
 boolean lwasfresh = false;
 Vector Sent_nonces = new Vector();
 Vector old_nonces = new Vector();
 Vector Sent_unencrypted = new Vector();
 Vector people_I_sent_stuff_to = new Vector();
 Vector messages_I_saw = new Vector();
 Vector sent_message_plain = new Vector();

75

 Vector nonces_I_saw = new Vector();
 Vector comp_I_sent = new Vector();
 Text hold_text;

 public Principal(String tname)
 { lname = tname; }

 public void addnonce(String nonce, String person, String from,
String lto, boolean readable, boolean sent_plain, boolean is_fresh,
 String comp, Vector list_of_components, Vector old_sent,
Vector bad_test_comp, Vector temp_holdings, Vector text_obj, String
type_enc)
 {//readable is set in encryption class...isfresh is set in text
class....
 //sent_plain is set to ture initially, then changed in
encryption class
 //from and lto only have values depending on whose key it is

 String temp_comp = comp + lto;//This is how I set the string
to look for duplicate retransmission of messages
 //in other words, if I sent out lets say A sent out a comp
{a}Ka and it is concat with A so it is {a}Ka + A = {a}KaA then later I
am receiving it back
 //to check for duplication I concatenate the lto,
 //let's say it is A getting it back, so then it becomes
{a}KaA, well they match so obviously someone sent A's original comp
back <-that's bad!

 //This part goes and get's the object of the nonce and then
we can ascertain it's current status (fresh or was fresh)
 //that way if I want to add more info about a text object, I
can and it's real easy to get now!
 //Maybe I can add a value that says who the originator was,
then I can populate that value here locally
 //and then based on lfrom and lto I can decide more
accurately about the tests? FUTURE WORK!
 int U = 0;
 while (U < text_obj.size())
 {
 Text temptext = (Text) text_obj.elementAt(U);
 if (nonce.equalsIgnoreCase(temptext.getText()))
 {//Could populate any variable I want here that the
particular text object might hold. (Future work?)
 //or I could just stop the loop and work with temptext
 hold_text = temptext; //I may need to use this object
later..in fact I will!!!
 lwasfresh = temptext.wasfresh;
 }//End of if and end of populating variables!
 U++;
 }//End of while through text objects

 //Let's go ahead and take out the * in the comp because a
principal may try to resend it later after
 //having read it and thus taking it's freshenss out...

76

 int B = 0;
 String placeholder = "";
 while (B < comp.length())
 {
 if (!comp.substring(B,B+1).equalsIgnoreCase("*"))
 placeholder = placeholder + comp.substring(B,B+1);
 B++;
 }
 comp = placeholder;
 //Start the principal anaylsis from the sender's view
 if (person.equals("sender"))
 {

 if (Sent_nonces.contains(nonce))
 {
 int e = Sent_nonces.indexOf(nonce);
 String old_comp = (String) Sent_nonces.elementAt(e +
1);
 //if (!comp.equalsIgnoreCase(old_comp))
 // if (temp_holdings.contains(comp) &&
temp_holdings.contains(old_comp) && comp.equalsIgnoreCase(old_comp))
 if (old_comp.indexOf(comp) > 0 | comp.indexOf(old_comp)
> 0)
 {}
 else
 {
 System.out.println("Warning: Sender is transmitting
nonce " + nonce + " in two separate components, invalidating its use as
an outgoing test.");
 Sent_nonces.removeElementAt(e + 1);
 Sent_nonces.removeElement(nonce);
 nonce = "an invalid " + nonce;
 }
 }//End of if sent_plain has it and I am resending in
another comp

 if (sent_plain && !nonces_I_saw.contains(nonce))
 {
 //since these nonces are sent plain I have to go
through vector of invalid test comp
 //and see if later this nonce doesn't show up there,
thus negating it's validity
 int e = 0;
 System.out.println("Sender may be attempting to
initiate an incoming test by transmitting " + nonce + " in the
clear.");
 sent_message_plain.addElement(nonce);
 sent_message_plain.addElement(comp);
 }//End of initiating incoming test

 //Start of initiating outgoing test
 else if ((!bad_test_comp.contains(comp) ||
!temp_holdings.contains(comp)) && !nonces_I_saw.contains(nonce))
 {//If the test compopnent is in bad test comp and temp
holdings it can't be used

77

 if ((bad_test_comp.contains(comp) &&
temp_holdings.contains(comp)))
 { }
 else
 {
 System.out.println("Sender may be attempting to
initiate an outgoing test by transmitting " + nonce + " in encrypted
form. ");
 Sent_nonces.addElement(nonce);
 Sent_nonces.addElement(comp);
 }
 }
 ///End of initiating outgoing test

 else if (temp_holdings.contains(comp) &&
bad_test_comp.contains(comp))
 {
 System.out.println(comp + " is an invalid test
component because it's either a proper");
 System.out.println("subterm of another component or is
a duplicate transmission!");
 }

 else if (nonces_I_saw.contains(nonce))
 System.out.println("Sender is attempting to intiate a
test with an old/invalidated nonce!!!");

 if (readable)
 { people_I_sent_stuff_to.addElement(lto); }//Can the
person I send it to read it?
 //If the recipient can't read it then it won't count
later when checking for unsolicited

 if (old_nonces.contains(nonce))//Stops reuse of nonces
and won't allow tests to work
 { int z = old_nonces.indexOf(nonce);
 z = z + 1;
 System.out.println("I've sent nonce " + nonce + "
out before in message " + old_nonces.elementAt(z));

Sent_nonces.removeElement(old_nonces.elementAt(z)); //Get rid of
message associated with it
 Sent_nonces.removeElement(nonce);//Get rid of
previously sent out nonce
 if (sent_message_plain.contains(nonce))
 {
 z = sent_message_plain.indexOf(nonce);

sent_message_plain.removeElementAt(z + 1);
 sent_message_plain.removeElement(nonce);
 }
 }

 if (is_fresh)//Because nonces may come in bundles only get
the fresh one for display

78

 { the_fresh_nonce = nonce; }
 else
 the_fresh_nonce = "";

 if (!from.equalsIgnoreCase(""))
 {
 String temporary2 = "";
 int h = 0;
 while (h < comp.length())
 {
 if
(!comp.substring(h,h+1).equalsIgnoreCase("*"))//duplicate! See below
note:
 temporary2 = temporary2 +
comp.substring(h,h+1);//duplicate, not needed but not sure top part
will stay
 h++;//so not going to remove this yet!!!
 }
 //comp_I_sent.addElement(temporary2);//putting comp in
old vector of stuff I already sent
 }

 //In case the person sends out a nonce both encrypted and
plain I will remove them and announce failed test...
 if (sent_message_plain.contains(nonce) &&
Sent_nonces.contains(nonce))
 {
 System.out.println("Sender is sending the same nonce "
+ nonce + " out both encrypted and plain.");
 System.out.println("It may only be used to complete an
incoming test.");
 //remove the bad nonce from both respective vectors...
 // int z = sent_message_plain.indexOf(nonce);
 // sent_message_plain.removeElementAt(z + 1);
 // sent_message_plain.removeElement(nonce);
 int z = Sent_nonces.indexOf(nonce);
 Sent_nonces.removeElementAt(z + 1);
 Sent_nonces.removeElement(nonce);
 //now we put this comp in the bad test comp vector so we
don't flag an unsolicited test
 // bad_test_comp.addElement(comp);
 nonces_I_saw.addElement(nonce);
 }

 }//End of person being the sender////////////////////

 if (person.equals("receiver"))//////Start the receiver
 {
 if (nonces_I_saw.contains(nonce) && is_fresh)
 { System.out.println("Warning: " + this.lname + " is
seeing " + nonce + " again...but it's tagged with * (fresh)
identifier!"); }

 if (sent_plain && is_fresh)
 nonces_I_saw.addElement(nonce);

79

 // &&
!bad_test_comp.contains(comp) this was part of restrictions on
unsolicited test...
 if (!this.people_I_sent_stuff_to.contains(from)
 && !Sent_nonces.contains(nonce) &&
!messages_I_saw.contains(comp)
 && readable && (is_fresh | lwasfresh) &&
!nonces_I_saw.contains(nonce)
 && !sent_message_plain.contains(nonce) &&
!old_sent.contains(nonce) && !type_enc.equalsIgnoreCase("ASYM"))
 {
 System.out.print("Unsolicited test for " + this.lname);
 System.out.println(" because of nonce " + nonce + "
within test component < " + comp + " > ");
 nonces_I_saw.addElement(nonce);
 }//End of If for unsolicited test

 else if (!this.people_I_sent_stuff_to.contains(from) &&
!bad_test_comp.contains(comp)
 && !messages_I_saw.contains(comp) && readable &&
is_fresh && (nonces_I_saw.contains(nonce)
 | sent_message_plain.contains(nonce) |
Sent_nonces.contains(nonce)))
 { System.out.println("Sender may be attempting to
initiate a test with an old nonce!"); }

 else if (!this.people_I_sent_stuff_to.contains(from) &&
bad_test_comp.contains(comp) &&
 !messages_I_saw.contains(comp) && readable &&
is_fresh)
 {
 System.out.print("Receiver is receiving an invalid
test component " + comp);
 System.out.println(" otherwise, it would be an
unsolicited test with fresh term " + nonce);
 }

 if (this.people_I_sent_stuff_to.contains(from) &&
readable && is_fresh
 && !nonces_I_saw.contains(nonce) &&
!Sent_nonces.contains(nonce)
 && !sent_message_plain.contains(nonce) &&
!old_sent.contains(nonce) && !type_enc.equalsIgnoreCase("ASYM"))
 {
 System.out.println("Pseudo-unsolicited test for "+
this.lname + " because " + nonce
 + " is a newly received fresh nonce, but " +
this.lname + " has sent items to " + from + " previously.");
 nonces_I_saw.addElement(nonce);
 }
 else if (this.people_I_sent_stuff_to.contains(from) &&
readable && is_fresh
 && !nonces_I_saw.contains(nonce) &&
Sent_nonces.contains(nonce))

80

 { System.out.println("Sender may be attempting to
intitiate a test with an old nonce!"); }

 if (comp_I_sent.contains(comp) && !sent_plain)
 {
 System.out.println("Evaluation of term " + nonce +
" indicates it is part of a component " + comp);
 System.out.println("which is being retransmitted.
Therefore, test component " + comp + " is invalidated!");
 }

 if (!comp_I_sent.contains(comp) &&
!old_nonces.contains(nonce))
 {//If it is fresh and not a duplicate test comp and not
a proper subterm somewhere

 if (Sent_nonces.contains(nonce) && sent_plain)
 {
 int t = Sent_nonces.indexOf(nonce);
 t = t + 1;
 System.out.println("The encrypted/fresh nonce " +
nonce + " has been received back in new component: " + comp);
 System.out.print("Outgoing test for " + this.lname +
" because fresh term " + nonce + " was sent out earlier");
 System.out.println(" in < " +
Sent_nonces.elementAt(t)+ " > ");
 old_nonces.addElement(nonce);//Now I've got it back
I add nonce to old nonces vector

old_nonces.addElement(Sent_nonces.elementAt(t));//add associated
message
 }
 if (sent_message_plain.contains(nonce) && !sent_plain
&&
 !(bad_test_comp.contains(comp) &&
temp_holdings.contains(comp))&& !type_enc.equalsIgnoreCase("ASYM"))
 {
 int t = sent_message_plain.indexOf(nonce);
 t = t + 1;
 System.out.println("The unencrypted/fresh
nonce " + nonce + " has been received back in new component: " + comp);
 System.out.print("Incoming test for " + this.lname +
" because fresh term " + nonce + " was sent out earlier");
 System.out.println(" in < " +
sent_message_plain.elementAt(t) + " >");
 old_nonces.addElement(nonce);

old_nonces.addElement(sent_message_plain.elementAt(t));
 }//End of else for incoming
 if (Sent_nonces.contains(nonce) && !sent_plain &&
!temp_holdings.contains(temp_comp)&& type_enc.equalsIgnoreCase("ASYM"))
 {
 int t = Sent_nonces.indexOf(nonce);
 t = t + 1;

81

 System.out.println("The encrypted/fresh nonce " +
nonce + " has been received back in new component: " + comp);
 System.out.print("Outgoing test for " + this.lname +
" because fresh term " + nonce + " was sent out earlier");
 System.out.println(" in < " +
Sent_nonces.elementAt(t)+ " > ");
 old_nonces.addElement(nonce);//Now I've got it back
I add nonce to old nonces vector

old_nonces.addElement(Sent_nonces.elementAt(t));//add associated
message
 }//End of else if for outgoing test
 else if (Sent_nonces.contains(nonce) && !sent_plain
&& !temp_holdings.contains(temp_comp))
 {
 int t = Sent_nonces.indexOf(nonce);
 t = t + 1;
 System.out.println("The encrypted/fresh nonce " +
nonce + " has been received back in new component: " + comp);
 System.out.print("Outgoing/Incoming test for " +
this.lname + " because fresh term " + nonce + " was sent out earlier");
 System.out.println(" in < " +
Sent_nonces.elementAt(t)+ " > ");
 old_nonces.addElement(nonce);//Now I've got it back
I add nonce to old nonces vector

old_nonces.addElement(Sent_nonces.elementAt(t));//add associated
message
 }//End of else if for outgoing/incoming test

 if (temp_holdings.contains(temp_comp) &&
Sent_nonces.contains(nonce))
 {
 System.out.println("The encrypted nonce "+ nonce +
" has been received back, but in a duplicated transmission!");
 System.out.println("The component " + comp + " was
sent out identically by this sender.");
 }//End of retransmitted test
 }
 }//End of receiver part of addnonce function
 } //End of addnonce
}//End of class Principal
package protocolB;
/**
* Stephen Mancini and Robert Graham
* AFIT/ENG
* 23 Feb 2004

The purpose of this class is as follows:
Whenever an instance of an encrypted term is called, it happens here.
This class will ascertain if
a particular message is readable by sender, receiver, both or neither.
This happens through recursive calls
of getreadabletext() which is abstract and located several classes.
The arguments are the same, however, based

82

on who can read it, the from and to strings are set to relevant
setting. For instance, if a sender can read it
the from string is set to that value.
Bottom line, based on key values, sender and receiver are set and
getreadabletext function is called...
*/
import java.util.*;

public class Encryption extends Term
{
 /** Creates a new instance of Encryption */
 public Encryption(Term t, Text k) {
 this.term = t;
 this.key = k;
 }

 public Term getTerm() {
 return term;
 }

 public Text getKey() {
 return key;
 }

 public void getComp(Vector bad_test_comp, Vector temp_holdings,
String lfrom, String lto, boolean outside)
 {//I only want to add those cases where t = {h}k so add encrypted
wihtin encrypted components!

 if (outside)
 {
 //This part is for whenever I might be bringing encryption from
the min part but lets say it is in a sequence
 //I still need to store that outside part and unfortunately
this can't be done in PA because it call getComp
 //of whatever object type it finds. So if outside is only
encryption I can handle it in PA otherwise I go inside
 //each object type's getComp and do whatever, in some cases
this misght perform different functions
 //so you may see repeating code ut chances are it is augmenting
something unique to that inside instance
 temp_holdings.addElement(this);
 int max = this.toString().length();
 int Y = 0;
 String hold = "";
 while (Y < max)
 {
 if (!this.toString().substring(Y, Y+1).equalsIgnoreCase("*"))
 hold = hold + this.toString().substring(Y, Y+1);
 Y++;
 }//End of while loop through string
 temp_holdings.addElement(hold);
 String hold1 = hold + lfrom;
 String hold2 = hold + lto;

83

 if (!temp_holdings.contains(hold1))
 if (!temp_holdings.contains(hold2))
 temp_holdings.addElement(hold1);
 }//End of adding component based on the fact that it is outside
but iin sequential order

 if (this.getTerm() instanceof Sequence)
 {
 Sequence S = (Sequence) this.getTerm();

 for (ListIterator k = S.getTerms(); k.hasNext();)
 {
 Term l = (Term) k.next();
 if (l instanceof Encryption)
 {//Not seeing the other term as encryption...
 if (temp_holdings.contains(l.toString()))
 bad_test_comp.addElement(l);//encryption within
encryption...ruled out as test component

 ///////////////Just removing any astrerisks
 int max = l.toString().length();
 int Y = 0;
 String hold = "";
 while (Y < max)
 {
 if (!l.toString().substring(Y,
Y+1).equalsIgnoreCase("*"))
 hold = hold + l.toString().substring(Y, Y+1);
 Y++;
 }
 bad_test_comp.addElement(hold);
 /////////////End of removing any asterisks

 l.getComp(bad_test_comp,temp_holdings, lfrom, lto,
false);//Make sure their isn't more encryption within
 }
 else
 {//not encr5yption? Then either more sequence or text! Love
abstract classes.
 l.getComp(bad_test_comp, temp_holdings,lfrom, lto, false);
 }
 }//End of for loop through sequence iterator
 }//End of if it's a sequence..if not sequence or encryption don't
worry about it, it must be text only.

 else if (this.getTerm() instanceof Encryption)//encryption within
encryption
 {//Any encrypted components wihthin encrypted components are
ruled out as test components
 if (temp_holdings.contains(this.getTerm().toString()))
 bad_test_comp.addElement(this.getTerm());
 }
 }//end of getComp() function

84

 public void getTextObj(Vector text_obj)
 {//Let us get all the text objects that are within encryped terms
 if (this.getTerm() instanceof Sequence)
 {
 Sequence s = (Sequence) this.getTerm();
 for (ListIterator i = s.getTerms(); i.hasNext();)
 {
 Term u = (Term) i.next();
 u.getTextObj(text_obj);
 }
 }//end of sequence
 else if (this.getTerm() instanceof Text)
 this.getTerm().getTextObj(text_obj);
 else
 this.getTerm().getTextObj(text_obj);
 }//End of getTextObj()

 public void getReadableTexts(String lfrom, String lto, Vector p,
boolean readable,
 boolean sent_plain, String comp,
Vector list_of_components,
 Vector old_sent, Vector bad_test_comp,
Vector temp_holdings, Vector text_obj, String type_enc)
 {
 String temp = "";//If I can't open it I need to send a blank
recipient
 String temp_from = "";//I will set this based on whether or not
component is new regardless of encryption
 //Making assumotion that if comp is new that is where it
originates.
 String temp1 = this.key.toString().substring(1,2);//Set the first
value for the key
 String temp2 = "";//Maybe there are 2 values for the key...
 type_enc = "ASYM"; //What type of encryption? Needed for
negating unsolicited tests

 if (comp.equalsIgnoreCase(""))
 comp = this.term.toString();//If it wasn't a sequence in
P..A... then just use this term

 if (this.key.toString().length()>2)
 {
 temp2 = this.key.toString().substring(2,3);
 type_enc = "SYM";
 }

 if (!list_of_components.contains(comp))
 {
 temp_from = lfrom;
 list_of_components.addElement(comp);//It's not getting added in
PA so this is a quick fix...

85

 //besides, most concern in protocols comes inside the encrypted
portions transmission.
 }

 if ((temp1.equalsIgnoreCase(lto) | temp2.equalsIgnoreCase(lto))
&& (temp1.equalsIgnoreCase(lfrom) | temp2.equalsIgnoreCase(lfrom)))
 {//sender and recipient can read it
 System.out.println("Encrypt term(s) < " + this.term + " > with
key " + this.getKey().toString() + " is readable by both
sender/receiver.");
 term.getReadableTexts(lfrom, lto, p, true, false, comp,
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj,
type_enc);// this.term.toString());
 }
 else if (temp1.equalsIgnoreCase(lto) |
temp2.equalsIgnoreCase(lto))
 {//Only the recipient can read it
 System.out.println("Encrypted term(s) < " + this.term + " > with
key " + this.getKey().toString() +" is readable by recipient only.");
 term.getReadableTexts(temp_from, lto, p, true, false,comp,
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj,
type_enc);// this.term.toString());
 }
 else if (temp1.equalsIgnoreCase(lfrom) |
temp2.equalsIgnoreCase(lfrom))
 {//Only the sender can read it
 System.out.println("Encrypted term(s) < " + this.term + " > with
key " + this.getKey().toString() + " is readable by sender only.");
 term.getReadableTexts(lfrom, temp, p, false, false,comp,
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj,
type_enc);// this.term.toString());
 }
 else
 {//Neither can read it
 System.out.println("Encrypted term(s) < " + this.term + " >
with key " + this.getKey().toString() + " is readable by neither sender
nor receiver.");
 term.getReadableTexts(temp_from, temp, p, true, false, comp,
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj,
type_enc);//If the key doen't match either party
 }
 }

 public String toString() {
 return "{" + term.toString() + "}" + key.toString();
 }

 protected Term term;
 protected Text key;
 protected boolean within = false;
}

package protocolB;

/**

86

 *
 * A Protocol is a sequence of {@link Message}s.
 * Created on December 8, 2003, 4:57 PM
 * @author rgraham
 */
import java.util.*;
public class Protocol
{
 /** Creates a new instance of a Protocol. */
 public Protocol() {
 messages = new ArrayList();
 }

 public void addMessage(Message m) {
 messages.add(m);
 }

 public ListIterator listIterator() {
 return messages.listIterator();
 }

 public String toString() {
 StringBuffer sb = new StringBuffer();

 for (ListIterator i = messages.listIterator(); i.hasNext();)
 sb.append(((Message) i.next()).toString() + "\n");

 return sb.toString();
 }

 protected List messages;

 private static class Class1 {
 }
}

package protocolB;

/**
 * A message is a term that one principal sends to another.
 *
 * @author rgraham
 */
public class Message {

 /** Creates a new instance of Message */
 public Message(String from, String to, Term term) {
 this.from = from;
 this.to = to;
 this.term = term;
 }

 public String getReceiver() {
 return to;
 }

87

 public String getSender() {
 return from;
 }

 public Term getTerm() {
 return term;
 }

 public void setReceiver(String to) {
 this.to = to;
 }

 public void setSender(String from) {
 this.from = from;
 }

 public void setTerm(Term term) {
 this.term = term;
 }

 public String toString() {
 return from + " -> " + to + " : " + term;
 }

 protected String from;
 protected Term term;
 protected String to;
}

/*
 * TermParser.java
 *
 * Created on December 8, 2003
 */

package protocolB;

import protocolB.Parser.*;
import java.io.*;
import java.text.ParseException;

/**
 * A TermParser tests the parser's ability to parse Terms. The term to
parse is
 * specified on the command line (if it contains space, put it in
quotes).
 *
 * @author rgraham
 */
public class TermParser
{
 public static void main(String[] args) {
 boolean err = false;
 Term term = null;

88

 if (args.length == 0) {
 System.out.println("Nothing to parse.");
 System.exit(1);
 }

 System.out.println("Parsing term: '" + args[0] + "'");
 Parser p = new Parser(new StringReader(args[0]));
 try {
 term = p.parseTerm();
 } catch (ParseException e) {
 System.out.println(e + " at offset " + e.getErrorOffset());
 err = true;
 } catch (Exception e) {
 System.out.println(e);
 err = true;
 }

 if (!err)
 System.out.println("Successful parse of '" + term + "'");
 }
}

89

Bibliography

1. Blanchet, Bruno. From Secrecy to Authenticity in Security Protocols.
http://citeseer.nj.nec.com/correct/575612, 2000.

2. Guttman, Joshua D, Herzog Jonathon C. and F. Javier Fabrega. Strand Spaces:

Proving Security Protocols Correct, Journal of Computer Security, 1999.

3. Guttman, Joshua D. and F. Javier Fabrega. Paths through Well-Behaved Bundles,
(Abstract) June 2000.

4. Guttman, Joshua D. Security Protocol Design via Authentication Tests, Computer

Security Foundations Workshop, April 2002.

5. Guttman, Joshua D. and F. Javier Fabrega. Authentication Tests, Proceedings
2000 IEEE Symposium on Security and Privacy, 2000.

6. Guttman, Joshua D. Key Compromise, Strand Spaces and the Authentication

Tests, Electronic Notes in Theoretical Computer Science: 47, May 2001.

7. Guttman, Joshua D. Security Goals: Packet Trajectories and Strand Spaces,
September 2000, Unpublished.

8. Guttman, Joshua D. and F. Javier Fabrega. Authentication Tests and the Structure

of Bundles, November 2000.

9. Lowe, Gavin. Breaking and Fixing the Needham-Schroeder Public Key Protocol
using FDR, Springer-Verlag 1996.

10. Saidi, Hassen. Towards Automatic Synthesis of Security Protocols, 2002.

11. Song, Dawn Wiaodong. Athena: A New Efficient Automatic Checker for Security

Protocol Analysis, 1999.

12. Song, Dawn, Sergey Berezin and Adrian Perrig. Athena: A Novel Approach to
Efficient Automatic Security Protocol Analysis (Abstract).

13. Steiner, Jennifer G, Clifford Neuman and Jeffrey I. Schiller. Kerberos: An

Authentication Service for Open Network Systems, March 1988.

14. Tung, Brian. The Moron’s Guide to Kerberos: Version 1.2.2. December 1996.

15. http://www.w3.org/TR/SOAP, May 2003.

90

16. http://www.cs.cornell.edu/jif/, June 2003.

17. http://Maude.cs.uiuc.edu/overview.html, June 2003.

18. http://www.computer.org/proceedings/csfw/0201/02010192abs.htm, June 2003.

19. Clavel, Manuel and others. Maude 2.0 Manual. June 2003.

20. http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/rivard/rivard.htm

, December 2003.

21. http://cliki.tunes.org/Maude, December 2003.

22. Cervesato, Iliano and others. A Comparison between Strand Spaces and Multiset
Rewriting for Security Protocol Analysis, 2000.

23. http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?pi-calculus, November 2003.

24. Needham, Roger and Michael Schroeder. Using Encryption for Authentication in

Large Networks of Computers, December 1978.

25. http://www.usingcsp.com/, December 2003.

26. Mao, Wenbo. A Structured Operational Modelling of the Dolev-Yao Threat
Model. Hewlett-Packard Co. 2002.

27. Denker, G. and J. Mesegeur. Protocol Specification and Analysis in Maude, June

1998.

28. Song, D. and Adrian Perrig. Looking for Diamonds in the desert – Extending
Protocol Generation to Three Party Authentication and Key Agreement Protocols.
July, 2000.

29. Clark, John and Jeremy Jacob. A Survey of Authentication Protocol Literature:

Version 1.0. 17 November 1997.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2003 – March 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 AUTOMATING SECURITY PROTOCOL ANALYSIS

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR (S)

 Mancini, Stephen W., 1Lt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-12

10. SPONSOR/MONITOR’S
ACRONYM(S)
 NSA/I333

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 National Security Agency
 Attn: Sylvan Pinsky (pinsky@thematrix.ncsc.mil)/ I333
 9800 Savage Road
 Ft George G. Meade, MD 207500-6704

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT When Roger Needham and Michael Schroeder first introduced a seemingly secure protocol [24], it
took over 18 years to discover that even with the most secure encryption, the conversations using this protocol were
still subject to penetration. To date, there is still no one protocol that is accepted for universal use. Because of this,
analysis of the protocol outside the encryption is becoming more important. Recent work by Joshua Guttman and
others [9] have identified several properties that good protocols often exhibit. Termed “Authentication Tests”, these
properties have been very useful in examining protocols. The purpose of this research is to automate these tests and
thus help expedite the analysis of both existing and future protocols.
 The success of this research is shown through rapid analysis of numerous protocols for the existence of
authentication tests. The result of this is that an analyst is now able to ascertain in near real-time whether or not a
proposed protocol is of a sound design or whether an existing protocol may contain previously unknown weaknesses.
The other achievement of this research is the generality of the input process involved. Although there exist other
protocol analyzers, their use is limited primarily due to their complexity of use. With the tool generated here, an
analyst needs only to enter their protocol into a standard text file; and almost immediately, the analyzer determines
the existence of the authentication tests.
15. SUBJECT TERMS
 Cryptography, Secure Communications

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Graham, Robert P., Maj, USAF

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

103

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 ext. 4715
(Robert.graham@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

